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1. Proximal-regularity
* Few words about PROXIMA project
* Notion of proximal-regularity
* Applications in mathematical analysis

2. Selected challenges
* Going beyond prox-regularity
* From Hilbert setting to Banach spaces
* Prox-regular programming
* Smoothness principles
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» PROXIMA project belongs to the field of Variational Analysis (V.A.) =
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» PROXIMA project belongs to the field of Variational Analysis (V.A.) =
mathematics of Optimization, Control and Convergence/Measurability of sets.

» V.A. unifies various and numerous techniques coming from:

o Calculs of Variations
o Mathematical Programming
o Optimal Control

» V.A. covers areas such as:

o Convex Analysis

» Nonlinear Analysis
» Nonsmooth Analysis
o Set-Valued Analysis

» V.A. makes a great use of:

« Functional Analysis
o Measure theory
o Differential geometry.



Proximal-regularity = Rolling a ball

PROXIMA = Proximal-Regularity In Mathematical Analysis

Let S be a closed subset of a Hilbert space .7#. One says that S is
r-prox-regular for a real r > 0 if for every x € bdry S and every unit (proximal)
normal v at x

SNB(x+rv,r)=0 (or equivalently x € Projg(x +rv)).
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Proximal-regularity = Rolling a ball

PROXIMA = Proximal-Regularity In Mathematical Analysis

Let S be a closed subset of a Hilbert space .7#. One says that S is
r-prox-regular for a real r > 0 if for every x € bdry S and every unit (proximal)
normal v at x

SNB(x+rv,r)=0 (or equivalently x € Projg(x +rv)).

Variants: local prox-regularity, variable radii,...

Variable radii: p(x) instead of r, thatis SNB(x + p(x)v,p(x)) =0



Examples and remarks

o Any nonempty closed convex set of 7 is p(-)-prox-regular for any function
p 1 bdry C —]0, +od[.

» The complement of the open ball 7\ B(0,r) is r-prox-regular.

e The graph of a function f : 7 — % with a L-Lipschitz Fréchet derivative is
L~'-prox-regular.

o C:={(x,y) € R?:y < x|} fails to be p(-)-prox-regular for any lower
semicontinuous function p : bdry C —]0, +oo[.

« The set {(x,y) € R?: |y| > exp(—x)} is p(-)-prox-regular (with p(-) not
bounded from below !).

—exp(—z)




Some characterizations of (uniform) prox-regularity

Let S be a closed subset in a Hilbert space .77 and let r €]0, +<].

Ur(S) := {x € # :ds(x) < r} and 1 := 0 whenever r = +co.



Some characterizations of (uniform) prox-regularity

Let S be a closed subset in a Hilbert space 7 and let r €]0, +oo].

Ur(S) := {x € # :ds(x) < r} and 1 := 0 whenever r = +co.

The following assertions are equivalent:

(a) S is r-prox-regular;

(b) For all x;,x, € S, for all v e NP (S;x¢) NB, (v,xo —x¢) < or L ilxo — x4]%;
(c) For each 0 < s < r, the map projg is well-defined on Us(S) and

Iprojg () —projs(v)|| < (1=s/r) " u—v|| forallu,v € Us(S);

(d) The function a2 is C'! on U,(S);
(e) For all x{,xo € S and all t € [0,1] with tx4 + (1 — t)Xo € U(S),

1
ds(txy +(1~t)xp) < 5o min(t, (1~ 1)) xy —xg %

If in addition S is weakly closed, then one can add:
(f) The mapping projg(-) is continuous on U (S).



Comments

» Prox-regularity has a long story: G. Durand (1931); N. Aronszajn, K.T.
Smith (1956); Yu.G. Reshetnyak (1956); H. Federer (1959); J.-P. Vial (1983);
A. Canino (1988); G. Chavent (1991), A. Shapiro (1994); F.H. Clarke, R.L.
Stern, P.R. Wolenski (1995); R.A. Poliquin, R. T. Rockafellar, L. Thibault
(2000).
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Smith (1956); Yu.G. Reshetnyak (1956); H. Federer (1959); J.-P. Vial (1983);
A. Canino (1988); G. Chavent (1991), A. Shapiro (1994); F.H. Clarke, R.L.
Stern, P.R. Wolenski (1995); R.A. Poliquin, R. T. Rockafellar, L. Thibault
(2000).

» Prox-regularity is connected to other classes of sets:

» Exterior sphere condition: for all x € bdry C, there is yx € bdry C such
that B(yx,r)NC =0 and ||x — yx|| =r.
« Interior sphere condition: for all x € bdry C, there is yx € bdry C such
that B(yx,r) C C and ||x —yx|| =r.
e Subsmoothness A set S is subsmooth at x € S provided that

(X*,xo —x1) < €l|xo —xq|| forallxy,xo € SNB(X,8),x* € N(S;x) NB.

« Strong convexity of radius R > 0 = intersection of closed balls with
radius R (< for all x,x’ € C and all v € N(C;x) with ||v|| =1,

1
(v =x) < =55l =x|).



epip




Nonconvex functions

Important concepts to go beyond convexity property: quasiconvexity (1953),
paraconvexity (1979), lower-C' (1981), lower-C? (1982), weakly convex
functions (1983), $-convexity (1983), primal lower nice/regular (1991), and
prox-regular functions (7996), approximate convex functions (2000)...



Nonconvex functions
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paraconvexity (1979), lower-C' (1981), lower-C? (1982), weakly convex
functions (1983), $-convexity (1983), primal lower nice/regular (1991), and
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(Sub)gradient inequality for a (smooth) convex function f : 5# — RU {+e}:
f(x') > f(x)+(Vf(x),x'—x) forallx,x" €. #
o Prox-regularity at x for x* whenever there is ¢ > 0 such that
f(x') > f(x) + (x*,x' —x) — o |x —x|]?, (1)

for all x,x’ near X with f(x) near f(x) and x* € df(x).

« Primal lower-regular/nice of parameter s
F(x') > £(x) + (x*,x" —x)—c(1 + x| x —x'||° @)

for appropriate points x,x’ and appropriate subgradient x* € 9f(x).



Some applications of prox-regularity

» Separation properties.

« Differential inclusions/equations (Moreau sweeping process, differential
games).

« Various algorithms (projected gradient, alternated projections, averaged
projections).

o Metric regularity.

o Determination.

» Extension of Attouch’s theorem.

o Selections for multimappings.

» Control (sweeping process, minimum time problem).
o Hamilton-Jacobi.

e Isoperimetric inequalities.



Ball separation property (with a common point)

Theorem (J. Ph. Vial (83), G.E. Ivanov (06))

Let S be an r-prox-regular set of the Hilbert space .7 with r > 0 and C be
a non-singleton closed set in 7 which is r-strongly convex with
CnS={x}and x € bdryC.

Then one has the ball separation property for some v € 27 with ||v| = 1

B(x—rv,r)nS=0 and CCB[Xx—rv,r].



Ball separation property (with a common point)

Let S be an r-prox-regular set of the Hilbert space .7 with r > 0 and C be
a non-singleton closed set in 7 which is r-strongly convex with
CnS={x}and x € bdryC.

Then one has the ball separation property for some v € 27 with ||v| = 1

B(x—rv,r)nS=0 and CCB[Xx—rv,r].

z S

Other separation properties: with gap(C,S) > 0, between a prox-regular set
and a point,...



Optimization under a prox-regular constraint: projected gradient method

Let S be a bounded r-prox-regular set of RN and let f : RV — R be a

F-differentiable function. Assume that f (resp. Vf) is Ly-Lipschitz (resp.

Ly-Lipschitz). Let xq € S and y €]0,min(f-, [io)[.

Then, the sequence (xp)nen of RV defined by

Xns1 = projg (Xn — YVf(xn)) forallne N (8)

is well defined.



Optimization under a prox-regular constraint: projected gradient method

Let S be a bounded r-prox-regular set of RN and let f : RN — R be a
F-differentiable function. Assume that f (resp. Vf) is Ly-Lipschitz (resp.

Ly-Lipschitz). Let xq € S and y €]0,min(f-, [io)[.

Then, the sequence (xp)nen of RV defined by
Xns1 = projg (Xn — YVf(xn)) forallne N (8)
is well defined. Further:

(a) Forallne N, f(X,,1) < f(xn) — %(1y —L4)|[Xpe1 —Xnl-

(b) One has limp_,..d( — V(xn),N(S;xn)) = 0.
(c) Every convergent subsequence (Xs(n))nen has its limit in the set

N:={xeS:-Vf(x) e N(S;x)}.



Differential inclusions

Let .27 be a Hilbert space, C:/=[0,T] =3 s be a nonempty closed
convex-valued multimapping, ug € C(0). In 1971, J.J. Moreau introduced the
following differential inclusion
—u(t) e N(C(t);u(t)) A-ae.tel,
u(t) e C(t) foralltel,

u(0) = up,
where N(S;a) :={ve #:(v,x—a) <0,vx € S} forevery SC /#,ac S.
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Differential inclusions

Let .27 be a Hilbert space, C:/=[0,T] =3 s be a nonempty closed
convex-valued multimapping, ug € C(0). In 1971, J.J. Moreau introduced the
following differential inclusion
—u(t) e N(C(t);u(t)) A-ae.tel,
u(t) e C(t) foralltel,

u(0) = up,
where N(S;a) :={ve #:(v,x—a) <0,vx € S} forevery SC /#,ac S.

N(C(t);up) = Ryw

ug € int C(0)

Applications: Elastoplasticity, economics, crowd motion, non-regular circuits.



Handling sweeping process: the catching-up algorithm

Step 1: Time discretization t := i J; and u’,, € Projgn (uf) # 0.

Step 2: Construction of step mappings

t—t"
[:=[0,T]>t— up(t) :=uj + t_,717_’t‘,7(u,f’+1 —up).
I+ ]

Step 3: Convergence of (up(-))n to some u(-) : [0, T] — 5 solution of
sweeping process.



Handling sweeping process: the catching-up algorithm

Step 1: Time discretization t := i J; and u’,, € Projgn (uf) # 0.
Step 2: Construction of step mappings
t—t"
[:=[0,T]>t— up(t) :=uj + ﬁ(uﬂr1 —uj).

i+1 i
Step 3: Convergence of (up(-))s to some u(-) : [0, T] —  solution of
sweeping process.

C(0) C(ts) o)

Ct) o)




Handling sweeping process: regularization

To solve the differential inclusion
—u(t) e N(C(t);u(t)) -a.e.tel,
(SP)S u(t) e C(t) forallt e,
u(0) = ug.
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» Step 1: Yosida regularization of the normal cone
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is nothing but the gradient of the Moreau envelope
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For each A > 0, we then consider u (-) the unique solution of

— (1) = ﬁvdg(,l)(uz(t)%
ux(0) = uo.
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» Step 2: Establish uy () » u(-)as 1 ] 0.



Handling sweeping process: regularization

To solve the differential inclusion
—u(t) e N(C(t);u(t)) -a.e.tel,
(SP)S u(t) e C(t) forallt e,
u(0) = ug.
» Step 1: Yosida regularization of the normal cone
N(C(t);-) = dwgp ()
is nothing but the gradient of the Moreau envelope

)
ex(Wow)() = 57960 ()

For each A > 0, we then consider u (-) the unique solution of

— (1) = ﬁvdg(,l)(uz(t)%
ux(0) = uo.

» Step 2: Establish u; (1) — u()) as A | 0.
» Step 3: Show that u(-) is a solution of (SP).



Existence and uniquess of a solution

Theorem (2006)
Assume that there is r > 0 such that C(t) c ./# is r-prox-regular for each t.
Assume also that there is an increasing BV function v : [0, T] — R such that

haus(C(s), C(t)) < v(t) —v(s) foralls,t.

Then, the sweeping process has one and only one solution.



Metric regularity

Prox-regularity is well appropriate to get metric regularity property under
openness condition.

Let M : 27 = ' be a multimapping, ¥ € Y. Assume that there are two
reals a, B > 0 satisfying B > 4-(a? + B2) and such that:

(/) the set gph M is r-prox-regular;
(iiy B(y,B) c M(B[x,a]) forallx e M—(¥).

Then, there exists a real y > 0 such that for every x € M~ (y), there exists a
real 6 > 0 satisfying

d(x,M'%)) < yd(7,M(x)) forall x € B(X,5).
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Challenge 1: going beyond prox-regularity

» Replaced usual distance function ds by some generalized distance
function
Ay(x,y) =d(y,M(x)).

Hypomonotonicity property of (x,y) — dAy(x,y) ? Nonvacuity property of
dAy(x,y)? Not so far from prox-regularity of gphM?
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» Replaced usual distance function ds by some generalized distance
function

Ay (x,y) :=d(y,M(x)).

Hypomonotonicity property of (x,y) — dAy(x,y) ? Nonvacuity property of
dAy(x,y)? Not so far from prox-regularity of gphM?

« Approximate nearest points (a =1,2)
Projg , (x):={c e S:|x—c||* <dg(x)+n}. (4)

Can we obtained a theory of "approximate prox-regular sets"? At least,
investigate some natural properties for approximate nearest points: e.g.,

(a) Lipschitz property: haus(Projgﬂ1 (x),Projg‘n2 (x)) < C|ny —ny|? This is not
so far from transversality property: dgq¢(X) < ot (dg(x) +ds(x)).
(b) (Co)derivative?



Challenge 2: from Hilbert to Banach setting

Fact. Consider a closed set S in an Hilbert space, r > 0, x € bdry S and
v € N(S;x) with |Jv| = 1. The equivalence

SNB(x+rv,r)=0<vx € S,r||v|? <|x — (x+rv)|]?

easily leads to the following characterization of r-prox-regularity

(v,x'—x) < 2LrHHX/fXH2 for allx,x’ € S,v € N(S;x) with ||v|| = 1.



Challenge 2: from Hilbert to Banach setting

Fact. Consider a closed set S in an Hilbert space, r > 0, x € bdry S and
v € N(S;x) with |Jv| = 1. The equivalence

SNB(x+rv,r)=0<vx € S,r||v|? <|x — (x+rv)|]?

easily leads to the following characterization of r-prox-regularity

(v,x'—x) < 2LrHHX/fXH2 for allx,x’ € S,v € N(S;x) with ||v|| = 1.

Question. What tool can be used to replace the above square norm
development in Banach spaces?

Answer. The duality multimapping:

* * * * * — 1
Jp(x) 1= {X € X7 (x*x) = XLl x| = [1x]° 1}=9,;H~H'°(X)



Xu-Roach’s inequalities

. X+
8(e):=inf{1 = | 52X 1< il = Iyl = 1, Ix v = e},

X+TY||[+|(|X—T
p() = sup{ PE =Dy =12y
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Xu-Roach’s inequalities

. X+
8(e):=inf{1 = | 52X 1< il = Iyl = 1, Ix v = e},

X+TY||[+|(|X—T
p() = sup{ PE =Dy =12y

Under some appropriate rotundicity and smoothness properties of the
involved norm || - ||, we have the following good behavior (1991, Xu-Roach’s
inequalities)
x*—y* x—y) > K(max(|x|, ly|)?>6 __x=yl ,
0 =y x—y) 2 Kmax(el, 1?8 (s )
where as usual §(-) denotes the modulus of uniform convexity of the norm
[ -]]- In the same line, if the norm || - || is uniformly smooth we also have for
some L >0
1 Ix =yl
Jo(x) = da(y) [ < L(max(|Ix||, |y [)? P
200 =Wl W0 e (i Ty

> forallx #y,

20



Further investigations

» Develop necessary and sufficient conditions for prox-regularity without the
help of Xu-Roach’s inequalities.

o Prox-regularity with variable radius.
o Preservation of prox-regularity in Banach spaces: provide sufficient
condition ensuring the prox-regularity of the constrained set

{x€:91(x) <0,....gm(X) < 0.Gms1(x) = 0,...,gmen(x) = 0}
» Going beyond uniform convexity and smoothness of the norm || - ||. Locally
uniformly banach spaces ?

o Separation properties, metric regularity,...

21



Challenge 3: Prox-regular programming

» "Quasi prox-regularity”. f : X — RU{+e} is quasiconvex whenever its
sublevel sets are convex.

Development of appropriate tools for optimality conditions of quasiconvex
functions:
N(epif;-) ~> N({f <r};)

22
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» "Maximal hypomonotone operator”. The normal cone N(S;-)NB to a
prox-regular set S enjoys some hypomonotonicity property, namely

1
(vi—va.x1 —x2) >~ ixy —x5|? forallv; € N(S;x;)NB

Fact: The normal cone to a nonempty closed convex set is a maximal
monotone operator. Can we extend such a result to prox-regular sets?
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Challenge 3: Prox-regular programming

» "Quasi prox-regularity”. f : X — RU{+e} is quasiconvex whenever its
sublevel sets are convex.

Development of appropriate tools for optimality conditions of quasiconvex
functions:
N(epif;-) ~> N({f <r};)

» "Maximal hypomonotone operator”. The normal cone N(S;-)NB to a
prox-regular set S enjoys some hypomonotonicity property, namely

1
(vi—va.x1 —x2) >~ ixy —x5|? forallv; € N(S;x;)NB
Fact: The normal cone to a nonempty closed convex set is a maximal

monotone operator. Can we extend such a result to prox-regular sets?

» "Optimization algorithms" involving non-monotone operators/prox-regular
sets. First work in this direction should be devoted to the classical alternated
projection:

Xone1 € Projg(xzn)  and  Xap,2 € Projg(Xan,1)-

22



Challenge 4: Differentiability of metric projection

o The convex set C := {(x,y) € R? : x < 0,y < 0} fails to have its nearest point
mapping differentiable near 0.

(2.0) ifz<0.y>0
projs(z,y) = ¢ (0,0) ifz>0,y>0

(0,y) ifz>0,y<0.

Theorem (Holmes (1973))

Let C be a convex body of a Hilbert space .72 whose boundary is a
CP*1-submanifold at any of its points. Then, d; is of class CP*! on s\ C
and proj is of class CP on #\ C.

28



Differentiability of metric projection

Theorem (Correa, Salas, Thibault (2018))
Let C be a p(-)-prox-regular set for some continuous function p which
satisfies some interior tangent cone property at any of its points.

If bdry C is a CP*'-submanifold at any of its points, then d¢ (resp. projc) is of
class CP*1 (resp. CP) on U, \ C.

Corollary: Holmes result for convex bodies. Converse implication holds
(Salas & Thibault, (2021)): statement (and proof) = technical.

Open question: can we expect something for dfarg(x) := sup.cc ||IX — ||,
farg(x) where C is a strongly convex set ?

24



Some references on weak and strong convexity

» V.V. Goncharov and G.E. Ivanov, Strong and weak convexity of closed
sets in a Hilbert space, Springer Optimization and its Applications, vol
113 (2017), 259-297.

» H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959),
418-491.

» J.J. Moreau, Rafle par un convexe variable I, Travaux Sém. Anal.
Convexe Montpellier 1 (1971), Exposé no 15.

» F. Nacry, On prox-regularity and strong convexity with variable radii in
Hilbert spaces, to appear in Optimization.

» F. Nacry, V.A.T. Nguyen, J. Venel, Metric subregularity and w(-)-normal
regularity properties, J. Optimization Theory and Applications,
10.1007/s10957-024-02476-5.

» E.S. Polovinkin, Strongly convex analysis, Mat. Sb. 187 (1996), no. 2,
103130,Sb. Math. 187 (1996), no. 2, 259286.

» J.-P. Vial, Strong and weak convexity of sets and functions, Math.
Oper. Res. 8 (1983), no 2, 231-259.
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Thank you for your attention!
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