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• Applications in mathematical analysis
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PROXIMA project ⊂ Variational Analysis

▶ PROXIMA project belongs to the field of Variational Analysis (V.A.) =
mathematics of Optimization, Control and Convergence/Measurability of sets.

▶ V.A. unifies various and numerous techniques coming from:

• Calculs of Variations
• Mathematical Programming
• Optimal Control

▶ V.A. covers areas such as:

• Convex Analysis
• Nonlinear Analysis
• Nonsmooth Analysis
• Set-Valued Analysis

▶ V.A. makes a great use of:

• Functional Analysis
• Measure theory
• Differential geometry.
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Proximal-regularity = Rolling a ball

PROXIMA = Proximal-Regularity In Mathematical Analysis

Let S be a closed subset of a Hilbert space H . One says that S is
r-prox-regular for a real r > 0 if for every x ∈ bdryS and every unit (proximal)
normal v at x

S∩B(x + rv, r) = /0
(
or equivalently x ∈ ProjS(x + rv)

)
.

Variants: local prox-regularity, variable radii,...

Variable radii: ρ(x) instead of r, that is S∩B
(
x + ρ(x)v,ρ(x)

)
= /0
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Examples and remarks

• Any nonempty closed convex set of H is ρ(·)-prox-regular for any function
ρ : bdryC →]0,+∞[.

• The complement of the open ball H \B(0, r) is r-prox-regular.

• The graph of a function f : H → H with a L-Lipschitz Fréchet derivative is
L−1-prox-regular.

• C := {(x,y) ∈R2 : y ≤ |x|} fails to be ρ(·)-prox-regular for any lower
semicontinuous function ρ : bdryC →]0,+∞[.

• The set {(x,y) ∈R2 : |y| ≥ exp(−x)} is ρ(·)-prox-regular (with ρ(·) not
bounded from below !).
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Some characterizations of (uniform) prox-regularity

Let S be a closed subset in a Hilbert space H and let r ∈]0,+∞].

Ur (S) := {x ∈ H : dS(x) < r} and 1
r := 0 whenever r = +∞.

Theorem
The following assertions are equivalent:
(a) S is r-prox-regular;
(b) For all x1,x2 ∈ S, for all v ∈ NP(S;x1)∩B, 〈v,x2 −x1〉 ≤ 1

2r ‖x2 −x1‖2;
(c) For each 0 < s < r, the map projS is well-defined on Us(S) and

‖projS(u)−projS(v)‖ ≤ (1−s/r)−1 ‖u−v‖ for allu,v ∈ Us(S);

(d) The function d2
S is C1,1 on Ur (S);

(e) For all x1,x2 ∈ S and all t ∈ [0,1] with tx1 + (1− t)x2 ∈ Ur (S),

dS(tx1 + (1− t)x2) ≤ 1
2r min(t, (1− t))‖x1 −x2‖2;

If in addition S is weakly closed, then one can add:
(f ) The mapping projS(·) is continuous on Ur (S).
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Comments

▶ Prox-regularity has a long story: G. Durand (1931); N. Aronszajn, K.T.
Smith (1956); Yu.G. Reshetnyak (1956); H. Federer (1959); J.-P. Vial (1983);
A. Canino (1988); G. Chavent (1991), A. Shapiro (1994); F.H. Clarke, R.L.
Stern, P.R. Wolenski (1995); R.A. Poliquin, R. T. Rockafellar, L. Thibault
(2000).

▶ Prox-regularity is connected to other classes of sets:

• Exterior sphere condition: for all x ∈ bdryC, there is yx ∈ bdryC such
that B(yx , r)∩C = /0 and ‖x −yx‖ = r.
• Interior sphere condition: for all x ∈ bdryC, there is yx ∈ bdryC such
that B(yx , r) ⊂ C and ‖x −yx‖ = r.
• Subsmoothness A set S is subsmooth at x ∈ S provided that

〈x⋆,x2 −x1〉 ≤ ε‖x2 −x1‖ for allx1,x2 ∈ S∩B(x,δ ),x⋆ ∈ N(S;x)∩B.

• Strong convexity of radius R > 0 = intersection of closed balls with
radius R (⇔ for all x,x′ ∈ C and all v ∈ N(C;x) with ‖v‖ = 1,⟨

v,x′−x
⟩
≤− 1

2R ‖x′−x‖2).

6



Comments

▶ Prox-regularity has a long story: G. Durand (1931); N. Aronszajn, K.T.
Smith (1956); Yu.G. Reshetnyak (1956); H. Federer (1959); J.-P. Vial (1983);
A. Canino (1988); G. Chavent (1991), A. Shapiro (1994); F.H. Clarke, R.L.
Stern, P.R. Wolenski (1995); R.A. Poliquin, R. T. Rockafellar, L. Thibault
(2000).

▶ Prox-regularity is connected to other classes of sets:

• Exterior sphere condition: for all x ∈ bdryC, there is yx ∈ bdryC such
that B(yx , r)∩C = /0 and ‖x −yx‖ = r.
• Interior sphere condition: for all x ∈ bdryC, there is yx ∈ bdryC such
that B(yx , r) ⊂ C and ‖x −yx‖ = r.
• Subsmoothness A set S is subsmooth at x ∈ S provided that

〈x⋆,x2 −x1〉 ≤ ε‖x2 −x1‖ for allx1,x2 ∈ S∩B(x,δ ),x⋆ ∈ N(S;x)∩B.

• Strong convexity of radius R > 0 = intersection of closed balls with
radius R (⇔ for all x,x′ ∈ C and all v ∈ N(C;x) with ‖v‖ = 1,⟨

v,x′−x
⟩
≤− 1

2R ‖x′−x‖2).

6



Examples

7



Nonconvex functions

Important concepts to go beyond convexity property: quasiconvexity (1953),
paraconvexity (1979), lower-C1 (1981), lower-C2 (1982), weakly convex
functions (1983), Φ-convexity (1983), primal lower nice/regular (1991), and
prox-regular functions (1996), approximate convex functions (2000)...

(Sub)gradient inequality for a (smooth) convex function f : H →R∪{+∞}:

f (x′) ≥ f (x) +
⟨
∇f (x),x′−x

⟩
for allx,x′ ∈ H

• Prox-regularity at x for x⋆ whenever there is σ > 0 such that

f (x′) ≥ f (x) +
⟨
x⋆,x′−x

⟩
−σ‖x′−x‖2, (1)

for all x,x′ near x with f (x) near f (x) and x⋆ ∈ ∂ f (x).
• Primal lower-regular/nice of parameter s

f (x′) ≥ f (x) +
⟨
x⋆,x′−x

⟩
−c(1+‖x⋆‖)‖x −x′‖s (2)

for appropriate points x,x′ and appropriate subgradient x⋆ ∈ ∂ f (x).

8



Nonconvex functions

Important concepts to go beyond convexity property: quasiconvexity (1953),
paraconvexity (1979), lower-C1 (1981), lower-C2 (1982), weakly convex
functions (1983), Φ-convexity (1983), primal lower nice/regular (1991), and
prox-regular functions (1996), approximate convex functions (2000)...

(Sub)gradient inequality for a (smooth) convex function f : H →R∪{+∞}:

f (x′) ≥ f (x) +
⟨
∇f (x),x′−x

⟩
for allx,x′ ∈ H

• Prox-regularity at x for x⋆ whenever there is σ > 0 such that

f (x′) ≥ f (x) +
⟨
x⋆,x′−x

⟩
−σ‖x′−x‖2, (1)

for all x,x′ near x with f (x) near f (x) and x⋆ ∈ ∂ f (x).
• Primal lower-regular/nice of parameter s

f (x′) ≥ f (x) +
⟨
x⋆,x′−x

⟩
−c(1+‖x⋆‖)‖x −x′‖s (2)

for appropriate points x,x′ and appropriate subgradient x⋆ ∈ ∂ f (x).

8



Some applications of prox-regularity

• Separation properties.

• Differential inclusions/equations (Moreau sweeping process, differential
games).

• Various algorithms (projected gradient, alternated projections, averaged
projections).

• Metric regularity.

• Determination.

• Extension of Attouch’s theorem.

• Selections for multimappings.

• Control (sweeping process, minimum time problem).

• Hamilton-Jacobi.

• Isoperimetric inequalities.

9



Ball separation property (with a common point)

Theorem (J. Ph. Vial (83), G.E. Ivanov (06))
Let S be an r-prox-regular set of the Hilbert space H with r > 0 and C be
a non-singleton closed set in H which is r-strongly convex with
C∩S = {x̄} and x̄ ∈ bdryC.

Then one has the ball separation property for some v ∈ H with ‖v‖ = 1

B(x̄ − rv, r)∩S = /0 and C ⊂ B[x̄ − rv, r].

Other separation properties: with gap(C,S) > 0, between a prox-regular set
and a point,...
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Optimization under a prox-regular constraint: projected gradient method

Theorem (Balashov, 22)
Let S be a bounded r-prox-regular set of RN and let f :RN →R be a
F -differentiable function. Assume that f (resp. ∇f ) is L0-Lipschitz (resp.
L1-Lipschitz). Let x1 ∈ S and γ ∈]0,min( 1

L1
, R

L0
)[.

Then, the sequence (xn)n∈N of RN defined by

xn+1 := projS
(
xn − γ∇f (xn)

)
for alln ∈N (3)

is well defined.

Further:
(a) For all n ∈N, f (xn+1) ≤ f (xn)− 1

2
( 1

γ −L1
)
‖xn+1 −xn‖.

(b) One has limn→∞ d
(
−∇f (xn),N(S;xn)

)
= 0.

(c) Every convergent subsequence (xs(n))n∈N has its limit in the set

Λ := {x ∈ S : −∇f (x) ∈ N(S;x)}.
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Differential inclusions

Let H be a Hilbert space, C : I = [0,T ]⇒H be a nonempty closed
convex-valued multimapping, u0 ∈ C(0). In 1971, J.J. Moreau introduced the
following differential inclusion

−u̇(t) ∈ N(C(t);u(t)) λ -a.e. t ∈ I,
u(t) ∈ C(t) for all t ∈ I,
u(0) = u0,

where N(S;a) := {v ∈ H : 〈v,x −a〉 ≤ 0,∀x ∈ S} for every S ⊂ H , a ∈ S.

Applications: Elastoplasticity, economics, crowd motion, non-regular circuits.
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Handling sweeping process: the catching-up algorithm

Step 1: Time discretization tn
i := i T

2n and un
i+1 ∈ ProjC(tn

i+1)(un
i ) , /0.

Step 2: Construction of step mappings

I := [0,T ] 3 t 7→ un(t) := un
i +

t − tn
i

tn
i+1 − tn

i
(un

i+1 −un
i ).

Step 3: Convergence of (un(·))n to some u(·) : [0,T ] → H solution of
sweeping process.
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Handling sweeping process: regularization

To solve the differential inclusion

(SP)


−u̇(t) ∈ N(C(t);u(t)) -a.e. t ∈ I,
u(t) ∈ C(t) for all t ∈ I,
u(0) = u0.

▶ Step 1: Yosida regularization of the normal cone

N(C(t); ·) = ∂ψC(t)(·)

is nothing but the gradient of the Moreau envelope

eλ (ψC(t))(·) = 1
2λ

d2
C(t)(·).

For each λ > 0, we then consider uλ (·) the unique solution of−u̇λ (t) = 1
2λ ∇d2

C(tλ )(uλ (t)),
uλ (0) = u0.

▶ Step 2: Establish uλ (·) ?→ u(·) as λ ↓ 0.
▶ Step 3: Show that u(·) is a solution of (SP).
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Existence and uniquess of a solution

Theorem (2006)
Assume that there is r > 0 such that C(t) ⊂ H is r-prox-regular for each t.
Assume also that there is an increasing BV function v : [0,T ] →R such that

haus(C(s),C(t)) ≤ v(t)−v(s) for alls, t.

Then, the sweeping process has one and only one solution.
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Metric regularity

Prox-regularity is well appropriate to get metric regularity property under
openness condition.

Theorem (N., Nguyen, Venel (2024))
Let M : H ⇒H ′ be a multimapping, y ∈ Y . Assume that there are two
reals α,β > 0 satisfying β > 1

2r (α2 + β 2) and such that:

(i) the set gph M is r-prox-regular;

(ii) B(y,β ) ⊂ M(B[x,α]) for all x ∈ M−1(y).

Then, there exists a real γ ≥ 0 such that for every x ∈ M−1(y), there exists a
real δ > 0 satisfying

d
(
x,M−1(y)

)
≤ γd

(
y,M(x)

)
for all x ∈ B(x,δ ).
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Selected challenges



Challenge 1: going beyond prox-regularity

• Replaced usual distance function dS by some generalized distance
function

∆M (x,y) := d(y,M(x)).

Hypomonotonicity property of (x,y) 7→ ∂∆M (x,y) ? Nonvacuity property of
∂∆M (x,y)? Not so far from prox-regularity of gphM?

• Approximate nearest points (α = 1,2)

ProjαS,η (x) := {c ∈ S : ‖x −c‖α ≤ dα
S (x) + η}. (4)

Can we obtained a theory of "approximate prox-regular sets"? At least,
investigate some natural properties for approximate nearest points: e.g.,

(a) Lipschitz property: haus
(
ProjαS,η1

(x),ProjαS,η2
(x)

)
≤ C|η1 −η2|? This is not

so far from transversality property: dS∩C(x) ≤ α
(
dC(x) +dS(x)

)
.

(b) (Co)derivative?

18
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(
dC(x) +dS(x)

)
.

(b) (Co)derivative?
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Challenge 2: from Hilbert to Banach setting

Fact. Consider a closed set S in an Hilbert space, r > 0, x ∈ bdryS and
v ∈ N(S;x) with ‖v‖ = 1. The equivalence

S∩B(x + rv, r) = /0 ⇔∀x′ ∈ S, r‖v‖2 ≤ ‖x′− (x + rv)‖2

easily leads to the following characterization of r-prox-regularity⟨
v,x′−x

⟩
≤ ‖v‖

2r ‖x′−x‖2 for allx,x′ ∈ S,v ∈ N(S;x)with‖v‖ = 1.

Question. What tool can be used to replace the above square norm
development in Banach spaces?

Answer. The duality multimapping:

Jp(x) :=
{

x⋆ ∈ X⋆ : 〈x⋆,x〉 = ‖x⋆‖⋆‖x‖,‖x⋆‖ = ‖x‖p−1
}

= ∂
1
p‖ · ‖p(x)
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Xu-Roach’s inequalities

δ (ε) := inf{1−‖x +y
2 ‖ : ‖x‖ = ‖y‖ = 1,‖x −y‖ ≥ ε}.

ρ(τ) := sup{‖x + τy‖+‖x − τy‖
2 −1 : ‖x‖ = 1 = ‖y‖}

Under some appropriate rotundicity and smoothness properties of the
involved norm ‖ · ‖, we have the following good behavior (1991, Xu-Roach’s
inequalities)

〈x⋆−y⋆,x −y〉 ≥ K (max(‖x‖,‖y‖)2δ
( ‖x −y‖

2max(‖x‖,‖y‖)

)
,

where as usual δ (·) denotes the modulus of uniform convexity of the norm
‖ · ‖. In the same line, if the norm ‖ · ‖ is uniformly smooth we also have for
some L > 0

‖J2(x)−J2(y)‖⋆ ≤ L(max(‖x‖,‖y‖)2 1
‖x −y‖ρ

( ‖x −y‖
max(‖x‖,‖y‖)

)
for allx , y,
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Further investigations

• Develop necessary and sufficient conditions for prox-regularity without the
help of Xu-Roach’s inequalities.

• Prox-regularity with variable radius.

• Preservation of prox-regularity in Banach spaces: provide sufficient
condition ensuring the prox-regularity of the constrained set

{x ∈ H : g1(x) ≤ 0, . . . ,gm(x) ≤ 0,gm+1(x) = 0, . . . ,gm+n(x) = 0}

• Going beyond uniform convexity and smoothness of the norm ‖ · ‖. Locally
uniformly banach spaces ?

• Separation properties, metric regularity,...
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Challenge 3: Prox-regular programming

• "Quasi prox-regularity". f : X →R∪{+∞} is quasiconvex whenever its
sublevel sets are convex.

Development of appropriate tools for optimality conditions of quasiconvex
functions:

N(epi f ; ·)⇝ N({f ≤ r} ; ·)

• "Maximal hypomonotone operator". The normal cone N(S; ·)∩B to a
prox-regular set S enjoys some hypomonotonicity property, namely

〈v1 −v2,x1 −x2〉 ≥ −1
r ‖x1 −x2‖2 for allvi ∈ N(S;xi )∩B

Fact: The normal cone to a nonempty closed convex set is a maximal
monotone operator. Can we extend such a result to prox-regular sets?

• "Optimization algorithms" involving non-monotone operators/prox-regular
sets. First work in this direction should be devoted to the classical alternated
projection:

x2n+1 ∈ ProjS(x2n) and x2n+2 ∈ Proj′S(x2n+1).
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Challenge 4: Differentiability of metric projection

• The convex set C := {(x,y) ∈R2 : x ≤ 0,y ≤ 0} fails to have its nearest point
mapping differentiable near 0.

Theorem (Holmes (1973))
Let C be a convex body of a Hilbert space H whose boundary is a
Cp+1-submanifold at any of its points. Then, dC is of class Cp+1 on H \C
and projC is of class Cp on H \C.
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Differentiability of metric projection

Theorem (Correa, Salas, Thibault (2018))
Let C be a ρ(·)-prox-regular set for some continuous function ρ which
satisfies some interior tangent cone property at any of its points.

If bdryC is a Cp+1-submanifold at any of its points, then dC (resp. projC) is of
class Cp+1 (resp. Cp) on Uρ(·) \C.

Corollary: Holmes result for convex bodies. Converse implication holds
(Salas & Thibault, (2021)): statement (and proof) = technical.

Open question: can we expect something for dfarC(x) := supc∈C ‖x −c‖,
farC(x) where C is a strongly convex set ?

24



Some references on weak and strong convexity
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Thank you for your attention!
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