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Introduction

We are interested in :
- membrane filtration systems
- optimal synthesis

- automatic generation
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Membrane filtration systems
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Figure: Extracted from [Vroman et al., 2021]
State/cost : Control :
- m : mass of cake layer - u= 1: filtration
- v : produced volume - u= —1: backwash

- e : energy spend
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Dynamics modeling

The dynamics for filtration and backwash mode are assumed to be
given respectively by

- mg(m) and mp(m) for m (speed of variation of m),

- vg(m) and vp(m) for v (effective flow rate),

- er(m) and ep(m) for é (instantaneous energy consumption).

Considering u € [—1, 1], the dynamics are modelled by

1 1-—

i = = me(m) + = my(m),
14+ u 1—u
= m) 2 m),
14+u 1—u
¢ =— er(m) + 5 ep(m)
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Dynamics modeling

Denoting

the dynamic of the system is

m = umy(m) +m_(m)
v =uvy(m) +v_(m)
é =uer(m) +e_(m)
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Case #1 : Maximum volume

The goal is to maximise the filtered volume on a fixed time
interval [to, T] :

,
max [ u(e) ve(m(©) + v (m(t) dr,

(#1) s.c. m(t) = u(t) my(m(t)) + m—(m(t)),
u(t) €[-1,1], te€]t,T],
m(to) =mgy > 0.
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Case #2 : Minimum energy

The goal is to minimise the energy to provide a desired volume of
filtered water vr :
( tr
mint/ u(t) ex (m()) + e_(m(t)) dt,
m,v,u,tr to
s.c. m(t) = u(t) my(m(t)) + m—_(m(t)),
v(t) = u(t) vi(m(t)) + v—(m(1)),
u(t) € [-1,1], t € [to, tf],
m(to) = my, V(to) =0, V(tf) = Vf.
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Equivalent formulation

Let us consider the following general formulation

;

min /tf u(t) F2(xa(t)) + F2(xa(t)) de,

s.c. 1 (t) = u(t) fL(xa (1)) + FL(xa(t)),
%(t) = u(t) F2(xa(t)) + F2(xa(t)),
u(t) € [-1,1], t € [to, tf],
x1(to) = x0, Xo(to) =0, xa(tr) = x,

(OCP)

where x = (x1, x2).
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Equivalent formulation

Problem (#2) can be written as (OCP)

min / f u(t) er(xi(t)) +e—(x(t))dt

X,u,ts to

s.c. X1(t) = u(t) my(xa(t)) + m-(xa(t)),
X(t) = u(t) vy (xa(1)) + v—(xa(t)),
u(t) € [-1,1], t € [to, tf],
\ x1(to) = mo, xo(to) =0, xo(tr) = vy,

(OCP)

where x = (x1, x2).
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Equivalent formulation

Problem (#1) can be written as (OCP)

min —/fu(t) Vo (a(t) + v (xa(t))dt,

s.c. X1 (t) = u(t) my(x(t)) + m—(x(t)),
X(t) = uley0+1,

u(t) € [-1,1], t € [to, tf],
L X1(t0) = my, Xg(to) = 0, XQ(tf) = T,

(OCP)

where x = (x1, x2).
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Objectives

Provide optimal synthesis of (OCP) “whatever” inputs functions
and initial/final conditions are.
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Figure: Example of optimal synthesis with trajectories
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Pontryagin maximum principle

If (x,u,tr) is a solution of (OCP), there exists a costate
p = (p1, p2) such that p;(tf) = 0, the costate dynamic is satisfied
for almost every t € [to, tf]

. OH
p(t) = =5 (x(1), p(t), u(t))
as well as the maximisation condition for almost every t € [to, tf]

o2z H(E), p(e), w) = Hx(2), p(t), u(t)) = 0

where H is the hamiltonian given by

H(x, p,u) = u (p1fl(a) + p2f2(xa) — F2(x))
+ p1fl () + p2f?(xa) — ()
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Optimal control

Using the maximisation condition and the definition of H, we have

=-1 it ¢(x(t),p(t)) <0
u(t)y = 1 it ¢(x(t),p(t)) >0
el-1.1] i ¢(alt).p() =0

where the function ¢ is defined by
d(x1,p) = p1 FL(xa) + p2 FL (1) — £ ().

There exists t € [to, t¢[ such that u(t) =1 for almost
every t € [t, tr].
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Singular state and singular control

Let us suppose that there exists | C [ty, t¢] of non-zero mesure
such that Vt € I, ¢(x1(t), p(t)) = 0. Then we look for (x1, p, u)

such that
QZ_)(Xla p) =0
d)(le p) =0

¢(X17p7 U) =0
H(x1,p,u) =0

We can analytically have an expression of p(x;) and u(x;) such that

¢ (x1,p(x1)) = d(x1, p(x1)) = d(x1, p(x1), u(x1)) =0

2024 13/20
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Singular state and control

Hypothesis 1

There exists exactly one state xs € RT such that

H(X57 p(Xs)v U(Xs)) =0

Under Hypothesis 1, we numerically find the singular state xs by
using a rootfinding method, the singular control us = u(xs), and
the singular costate ps = p(xs)-

In Julia, we can use the ForwardDiff package to get the exact
derivative of the inputs functions.

Rémy Dutto Automatic generation of optimal synthesis for membrane filtration systems 2024 14/20



Indirect resolution
00008000

Optimal synthesis

We have computed the singular curve
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Figure: Optimal synthesis construction
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Optimal synthesis

We have to compute the switching and dispersal locus curve
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Figure: Optimal synthesis construction
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Optimal synthesis

We have to compute the switching and dispersal locus curve
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Figure: Optimal synthesis construction
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Optimal synthesis

We have to compute the switching and dispersal locus curve
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Figure: Optimal synthesis construction
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Switching and dispersal curves

The switching and the dispersal curves are the solution
of S(x) =0, where S is a function S: R? — R, x + S(x).

For instance, for the dispersal curve, this function is defined by
5(x) = w5 (x) — ¢g T (x)

where respectively <p0+ and @5* corresponds to the optimal cost
associated to the trajectory starting from x with the control

u = +1 (resp. u= —1 before hitting the switching curve, and the
control u = +1 after).

Moreover, for both curves, we know a point (a, b) such that
S(a, b) = 0.

Rémy Dutto Automatic generation of optimal synthesis for membrane filtration systems 2024 16/20



Indirect resolution
00000080

Differential continuation method

Let us suppose that there exists a function xj(xz) such that
S(x1(x2),x2) = 0.

Since S is constant, we have

g)i(x1(x2),xz)xi(x2) + a—Xz(xl(xz,xz)) —0

Function x;(x2) is the solution of the ODE

-1
) = (o Gale))) 5o babaoal), (b=
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Differential continuation method

In Julia, packages ForwardDiff and OrdinaryDiffEq work
together.

- The gradient of S is computed thanks to the ForwardDiff
package.

- Even if S contains a solution of an ODE, the derivative of S is
computed properly (it uses variational equations).

- The numerical integration is stopped when a condition is
satisfied by using Callback.
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Conclusion

We can generate automatically optimal feedback map associated to
Problem (OCP), used for membrame filtration systems.
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Figure: Optimal synthesis
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Conclusion
We can easily go further and generate the optimal strategy

classification associated to Problem (OCP).
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Figure: Classification of optimal strategies
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Filtration.jl Package : Documentation and more examples
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