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The Origins of Kriging

Geostatistical problem

• How to predict gold concentration everywhere in the ground,
• ... if it is only measured on few specific sites?

• This is an interpolation problem.

April, 2025 Some considerations on Kriging, Constraints and Classification 3 / 48



Kriging: a brief overview Constrained Multi-Output Kriging Constrained Classification Numerical Illustrations Appendix References

Gaussian Process Regression (1/5)

Gaussian approach: Gaussian Process Regression (±ML community)

Assume we have observed a function f (.) over a set of points X := (x1, . . . , xn)>:
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Here x in 1D, f in 1D. The vector of observations is y := f (X), i.e. yi := f (xi ) .
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Gaussian Process Regression (2/5)

Since f (.) in unknown, we make the assumption that it is close to the sample path of
a Gaussian process Y ∼ N (µ(.), k(., .)), with trend µ and covariance function k:
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here µ(x) = 0.
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Gaussian Process Regression (3/5)

If we remove all the samples that do not interpolate the observations we obtain:
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Gaussian Process Regression (4/5)
It can summarized by a mean function and 95% confidence intervals.
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• Kriging Mean: blue thick line
• Kriging Standard Deviation: proportional to confidence band width.

You can play here: https://durrande.shinyapps.io/gp_playground/ thanks Nicolas!

... here x ∈ R, but it is easy to extend to x ∈ Rd ...
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Gaussian Process Regression (5/5): equations

Conditional (posterior) distribution of Y (x?) given Y = (Y (x1), ...,Y (xn))>

By definition, (Y (x?),Y) is multivariate normal.
Hence the distribution of Y (x?)|Y = y is N (m(.), c(., .)) with :{

m(x?) = µ(x?) + h(x?)> K−1 (y− µ(X))
c(x?, x?′) = k(x?, x?′)− h(x?)> K−1 h(x?′)

where key ingredients are:
• K the n × n covariance matrix between Y and Y
• h(x?) the n × 1 covariance vector between Y and Y (x?)
• both deduced from k(., .) the covariance function of the (prior) Gaussian Process

Simple Kriging, Gaussian case
The Simple Kriging predictor mean and variance are{

E [Y (x?)|Y=y ] = m(x?) = h(x?)>K−1y
Var [Y (x?)|Y=y ] = c(x?, x?) = σ(x?)2 − h(x?)>K−1h(x?)

with σ(x?)2 = k(x?, x?), for a centered process, when µ(x) = 0 for all x.
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Simple Kriging: the statistical approach (1/2)

Another Approach: Best Linear Unbiased Prediction (±Geostat community)
Define the linear predictor

M(x?) :=
n∑

i=1

αi (x?)Y (xi ) = α(x?)>Y .

Now let us minimize on α(x?) = (α1(x?), ..., αn(x?)) the loss

∆(x?) := E
[

(M(x?)− Y (x?))2
]

= α(x?)>Kα(x?)− 2α(x?)>h(x?) + constant .

This leads to the vector of weights

α(x?) = K−1h(x?) ,

where h(x?) is the covariance vector between Y (x?) and the vector Y,
and K is the covariance matrix of Y. Y (.) centered here.
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Simple Kriging: the statistical approach (2/2)

Predictor and variance
From that follows the expression of M(x?) and ∆(x?):{

M(x?) = h(x?)>K−1Y
∆(x?) = σ(x?)2 − h(x?)>K−1h(x?)

One retrieves exactly the Simple Kriging mean and variance. ,
Notice that ∆(x?) does not depend on observed responses Y.

Pros and Cons of both approaches

• GPR more intuitive for varying x?

• GPR more suited to Bayesian analysis and interpretation, more visual
• Stat Approach not limited to Gaussian case
• Stat Approach easier to extend (other combination, criterions, penalization, etc.)

Because GPR/Kriging predicts a full, spatially varying, distribution,
it is of great use in decision making.
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GPR/Kriging Problems

Here are few selected problems:

• Model selection:
how to choose prior process, prior covariance function family, prior covariance
function parameters ?

• Computation:
how to compute the predictor when the matrices are huge?

• Adaptation:
how to adapt to specific settings (monotony, uncertainty, extremes, high
dimension, multiple outputs, constraints...)

We focus here on the last problems: multiple outputs, constraints.

Main differences with usual Kriging models are highlighted with a symbol .
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A problem at the origin of this study...

= Classification problem with knowledge on average percentages of each class.

Idea of predicting several membership degrees and with constraints.
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Multi-Output Kriging: example

Example of multi-output, e.g. at x ' 44, an observation Y(x) = (Y1(x), ...,Y4(x))>
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Here time series, x ∈ R for visual illustration, but in general x ∈ Rd .
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Multi-Output Kriging: a remark

Consider a vector-valued process

Y(x) = (Y1(x), ...,Yp(x))> ∈ Rp .

The good

• Observations at x1, ..., xn can be arranged in a single np vector

Ỹ := (Y1(x1), ...,Yp(x1), ...,Y1(xn), ...,Yp(xn))> ∈ Rnp

• We aim at predicting some Yi? (x?) ∈ R
• Same as predicting one value from np observations ,

The bad

• O
(
p2
)
cross-covariances for each pair of points (xi , xj ), need to model this

• Many hyper-parameters for these cross-covariances, hard to tune

• Large complexity O
(
n3p3

)
for the inversion of Var

[
Ỹ
]

• Not suited to classification, as we will see...
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Constrained Multi-Output Kriging: motivation

Why another study, why multiple outputs, why specific constraints?

• Multi-output:
Studying multiple outputs is useful:

- Observations of p > 1 variables, possibly dependent
- Need for a model with with not too many hyperparameters, not O

(
p2
)

• Constraints:
Prescribing e.g. the average value of predictions is useful:

- external information (known quantity of chemical loss, national statistic...)
- adverse modelling (regulation, simulation under specific scenarios...)
- need to homogenize results (over different regions, observed years, fairness
constraints...)

• Classification in mind:
Adapting to constrained classification:

- Multi-output applied to membership degrees
- Useful constraints: membership degrees sum to 1, prescribed percentages of
each class.
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Literature

Among a vast literature,

• Co-Kriging and multi-output Kriging: co-kriging, usually one main “primary”
output, O

(
p2
)
covariance models, cross co-variograms Goovaerts, 1998,

Ver Hoef and Cressie, 1993, Furrer and Genton, 2011, Genton and Kleiber, 2015,
Chiles and Delfiner, 2012, Alvarez et al., 2012, Wackernagel, 2003, Leroy et al.,
2022...

• Indicator Kriging: with a latent process, post-treatments, many covariances
models, Journel, 1983, Meer, 1996, Goovaerts, 2009, Chiang et al., 2013,
Agarwal et al., 2021...

• Gaussian Process and classification: with latent GP, Bayesian inference and
approximations, ordinal classes, Williams and Barber, 1998, Rasmussen et al.,
2006, Dahl and Bonilla, 2019, Panos et al., 2021...

• Constraints: without Kriging, classification Gordon, 1996, Bradley et al., 2000,
Höppner and Klawonn, 2008, Ganganath et al., 2014, fuzzy classification Benatti
et al., 2022, fairness constraints Zafar et al., 2019...
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Multi-Output Kriging

Framework

• Inputs: set of locations x ∈ X ⊂ Rd .
• Outputs: multi-valued random field Y(x) := (Y1(x), . . . ,Yp(x))> ∈ Rp .
• Observations: Y(x1), . . . ,Y(xn), that is n vectors of size p.

Question
How to predict Y(.) at some unobserved locations x?1 , . . . , x?q?

Joint Kriging Model

M(x?) :=
n∑

i=1

αi (x?)Y(xi ) , αi (x?) ∈ R, i = 1...n (1)

Simplifying assumption:
The weights are impacting all components the same way.
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Constrained Multi-Output Kriging
Recall the joint Kriging model,

M(x?) :=
n∑

i=1

αi (x?)Y(xi ) = Yα(x?) (2)

where Y := [Y(x1), . . . ,Y(xn)] ∈ Rp×n and α(x?) := (α1(x?), . . . , αn(x?))> ∈ Rn.

How to get optimal weights?

To get optimal weights A :=
[
α(x?1 ), . . . ,α(x?q )

]
, they are optimized in order to:

• minimize some error:

∆(x?) := E
[
‖M(x?)− Y(x?)‖2W

]
∈ R . (3)

where ‖v‖2W := v>Wv and W a given real symmetrical positive-definite matrix.

• under various constraints:

- Constraint 11111111111111111: Sum of weights equal to 1, α1(x?) + . . .+ αn(x?) = 1

- Constraint 22222222222222222: Prescribed average m of predicted values M(x?1 ), ...,M(x?q )
April, 2025 Some considerations on Kriging, Constraints and Classification 18 / 48
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Optimal weights, no constraint

Without constraint one retrieves Simple Kriging equations, but K, h(.) involve cross
covariances of all components of Y(.).

Proposition (Simple Joint Kriging weights)

The optimal weights α(x?) minizing the loss ∆(x?) are given by:

α(x?) = K−1h(x?) , (4)

or equivalently, using a matrix expression, under invertibility assumption,

A = K−1H , (5)

where K := E
[
Y>WY

]
, h(x?) := E

[
Y>WY(x?)

]
, and H :=

[
h(x?1 ), . . . , h(x?q )

]
.

If furthermore E [Yj (x)] = 0 for all j = 1, . . . , p, x ∈ X , then M(x?) is unbiased.

matrix sizes: α(x?) ∈ R, K ∈ Rn×n, h(x?) ∈ Rn, H ∈ Rn×q .

April, 2025 Some considerations on Kriging, Constraints and Classification 19 / 48



Kriging: a brief overview Constrained Multi-Output Kriging Constrained Classification Numerical Illustrations Appendix References

Optimal weights, constraint 11111111111111111

Considered constraint, similarly to ordinary Kriging

Constraint 11111111111111111: Weights sum to one, α>(x?)1n = 1, x? ∈ X .

Proposition (Ordinary Joint Kriging weights)

Under the Constraint 11111111111111111, the optimal weights α(x?) minimizing the loss ∆(x?) are:{
α(x?) = K−1 (h(x?) + λ(x?)1n)
λ(x?) = 1

δ

(
1− 1n>K−1h(x?)

) (6)

Equivalently, using matrix expressions, one gets{
A = K−1

(
H + 1nλ>

)
λ> = 1

δ

(
1q> − 1n>K−1H

) (7)

where K := E
[
Y>WY

]
, h(x?) := E

[
Y>WY(x?)

]
, and with scalar δ := 1n>K−11n.

For matrix expressions, λ := (λ(x?1 ), . . . , λ(x?q ))>, and H :=
[
h(x?1 ), . . . , h(x?q )

]
.

If furthermore, for all i = 1, . . . , p, x ∈ X , E [Yi (x)] = µi , then M(x?) is unbiased.
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Optimal weights, constraints 11111111111111111+22222222222222222

Considered constraints
• Constraint 11111111111111111: Weights sum to one, α>(x?)1n = 1, x? ∈ X .

• Constraint 22222222222222222: Prescribed average m of predicted values:

E [M(X?)|Y] = m, with X? r.v. on {x?1 , . . . , x?q}, distribution π.

Note: unlike usual kriging methods, weights must be calculated simultaneously.

Proposition (Joint Kriging weights under predicted values constraint)

The Joint Kriging weights minizing the loss ∆(x?) under the constraints 11111111111111111+22222222222222222 are:

A = K−1
(
H + 1nλ> + Y>λ′π>

)
[weights must be solved all at once] (8)

with Lagrange multipliers, provided that
(
1
δ
uu> − YK−1Y>

)
is invertible,

λ′ = γ−1
(1
δ
uu> − YK−1Y>

)−1 (
YK−1Hπ +

1
δ
u
(
1− 1n>K−1Hπ

)
−m
)

λ = δ−1
(
1q − H>K−11n − πλ′

>u
)

where u := YK−11n, γ := π>π ∈ R and δ := 1n>K−11n ∈ R. π = (P
[
X? = x?i

]
)i .
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Kriging mean and variance

There is no difficulty to compute Kriging Mean and Variance from the weights:

Proposition (Joint Kriging Mean)

Let α(x?) be any vector of weights, possibly satisfying supplementary constraints.
The associated Joint Kriging Mean writes:

M(x?) := Yα(x?) (9)

where Y = [Y(x1), ...,Y(x1)] is the p × n matrix of observations

Proposition (Joint Kriging Variance)

Let α(x?) be any vector of weights, possibly satisfying supplementary constraints.
The associated Joint Kriging variance writes:

∆(x?) = α(x?)>Kα(x?)− 2α(x?)>h(x?) + v(x?) , (10)

with K := E
[
Y>WY

]
, h(x?) := E

[
Y>WY(x?)

]
, v(x?) := E

[
Y(x?)>WY(x?)

]
.

Here aggregated error, also variance sharing results for the error of each component.
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Affine extension (1/2)

External information source
Idea for prescribed m: hidden external information (expert, other stat, etc.).
Let Z be the random vector containing this source of information.

Affine predictor

The affine predictor is:

M+(x?) := α0(x?)Z +
n∑

i=1

αi (x?)Y(xi ) , (11)

Given Z = m, a constant term is included in the sum, hence the name affine prediction.

Updated constraints

• Constraint 11111111111111111: Weights sum to one, 1n+1
>α+(x?) = 1, x? ∈ X .

with α+ = (α0(x?), . . . , αn(x?))>.

• Constraint 22222222222222222: Prescribed average predicted values:

E
[
M+(X?)|Z = m, Y

]
= m, with X? r.v. on {x?1 , . . . , x?q}
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Affine extension (2/2)

Updated optimal weights of the affine predictor can be derived easily:

Proposition (Affine version of predictors)

Assume that the following covariance vectors are given
P> := E

[
Z>WY

]
− E
[
Z>
]
WE [Y]

Q> := E
[
Z>WY?

]
− E
[
Z>
]
WE [Y?]

σ2Z := E
[
Z>WZ

]
− E
[
Z>
]
WE [Z]

(12)

Then optimal weights of previous cases can be updated by replacing Y, K, H by

Y+ =
[
m Y

]
, K+ =

[
σ2Z P>
P K

]
, H+ =

[
Q>
H

]
, (13)

In practice one can set, e.g., σ2Z � σ2, and P, Q filled with zeros.

=⇒ Better tuning of predictor’s behavior far from observations.
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Covariances (1/2)

Recall that all optimal weights rely on cross-moments matrices like K := E
[
Y>WY

]
.

One can easily replace these objects by “centered” ones:

Remark (Covariance matrices)

Assume that the predictor is unbiased (e.g. process with constant mean under
Constraint 11111111111111111). Then covariance matrices can be replaced by the “centered” ones{

K̃ = E
[
Y>WY

]
− E
[
Y>
]
WE [Y]

etc.
(14)

everywhere in previous Propositions, without changing the optimal weights α(x?).

=⇒ Only need, a generic covariance function

k(x, x′) := E
[
Y(x)>WY(x′)

]
− E
[
Y(x)>

]
WE

[
Y(x′)

]
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Covariances (2/2)

As ∆(x?) ∈ R, the covariances rely on an implicit sum of components of Y(.) :

k(x, x′) := E
[
Y(x)>WY(x′)

]
− E
[
Y(x)>

]
WE

[
Y(x′)

]
Remark (Known cross-covariances)

If weights W and cross-covariances between Y(x) and Y(x′) are known.
Then k(x, x′) can be computed.

Remark (Unknown cross-covariances)

Otherwise, one can model directly k(x, x′) with suitable hyperparameters: Assume
that W is such that the covariances depend only on some distance between x and x′:

k(x, x′) = σ2r
(
‖x− x′‖θ

)
, (15)

where r(.) is a correlation function and ‖x− x′‖2θ =
∑d

i=1

(
xi−x′

i
θi

)2
is a rescaled

Euclidean norm. Then all components of the covariances matrices K̃ , etc. can be
derived from this covariance function k
• Does not depend on W any more: with this assumption, no need to estimate W.
• This simplifies a lot the hyperparameters estimation.
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Application to constraint classification (1/3)

Assumption on observations

• Label binarization. Each class label ` ∈ {1, . . . , p} can be converted into a vector
of indicator functions (even for non ordinal classes):

Y :=
(
1{j=`}

)
j=1,...,p

.

• Observation of membership degrees. More generally, each observation Y(xi )
consists in a distribution of possible labels, where degrees sum to one

“Constraint 33333333333333333”: 1p>Y(xi ) = 1 , i = 1, . . . , n .

Non ordinal example of observations, p = 3 classes: {red , green, blue}

Y =

[
1
0
0

]
, Y =

[
0
1
0

]
, Y =

[
0
0
1

]
, and even Y =

[
1/2
0
1/2

]

only requirement: components sum to one.
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Application to constraint classification (2/3)

Illustration of the fuzzy classification

Y1

Y2

Y6

Y4

Y5

Y3

M(x?)?

Predicted membership degrees at point x?:

M(x?) = α1(x?)︸ ︷︷ ︸
∈R

Y1 + . . .+ α6(x?)︸ ︷︷ ︸
∈R

Y6 = 2%

[
1
0
0

]
+ . . .+ 40%

[
0
0
1

]
=

[
10%
35%
55%

]
... weights αi (x?) are obtained by Joint Kriging formulas, under chosen constraints.

April, 2025 Some considerations on Kriging, Constraints and Classification 28 / 48



Kriging: a brief overview Constrained Multi-Output Kriging Constrained Classification Numerical Illustrations Appendix References

Application to constraint classification (3/3)

Constrained Classification: apply Joint Kriging model to membership degrees :

Remark (Constraints impact)

Recall all constraints
• Constraint 11111111111111111: weights sum to one,
• Constraint 22222222222222222: prescribed average of predictions,
• Constraint 33333333333333333: observations are membership degrees, 1p>Y = 1q>.

Then with constrained Joint Kriging model:
• Predicted membership degrees are summing to one:

Constraints 11111111111111111+33333333333333333 =⇒ 1p>M(x?) = 1 , x? ∈ X

• Average class percentages over prediction points can be chosen:

Constraints 22222222222222222+33333333333333333 =⇒ E [M(X?)|Y] = m , with 1p>m = 1

m is the prescribed average of each class, and X? a rv over all prediction points.
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available notebooks

,

Available notebooks
All illustrations are generated with notebooks that are available at
https://gitlab.emse.fr/marc.grossouvre/jointkrigingsupplementary/

In modifiable executable format .Rmd and in executed directly readable .html format.

We did our best to make results fully reproducible, and figures settings easy to retrieve.
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A simple sinus function, 1D input, 1D output
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Figure: Joint Kriging Prediction. prescribed value m = 1.5 (horizontal dashed line). Observations
are black dots, the thin dotted blue line is the underlying function.
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Time-series Air Quality data, 1D input, 4D output, Constraint 11111111111111111
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Figure: Joint Kriging interpolation with Constraint 11111111111111111. data points (black dots). Top: CO, C6H6,
bottom: NOx, NO2. Predictions thick solid lines, true values are in thin black solid lines.

April, 2025 Some considerations on Kriging, Constraints and Classification 32 / 48



Kriging: a brief overview Constrained Multi-Output Kriging Constrained Classification Numerical Illustrations Appendix References

Time-series Air Quality data, 1D input, 4D output, chosen covariance

Despite p = 4 outputs, one needs a single covariance structure (which involves linear
combinations of components).
Multiply a periodic kernel with period of one day, and Matérn 3/2 kernel, parameter θ:

k(x , x ′) = σ2exp
(
− sin2(π|x − x ′|)

)(
1 +
|x − x ′|

θ

)
exp
(
−
|x − x ′|

θ

)
. (16)
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length−scale theta

er
ro
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cr
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rio

n

Error for different parameters theta

best theta =  1.39866220735786 , Error = 1.05046805977834

Figure: Optimization of the single correlation hyperparameter θ for the four selected pollutants,
data extracted from Air quality data set.

Caution: depends quite heavily on the chosen observation locations, sometimes the
error function is monotonic! easier to control with very few hyperparameters!
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Time-series Air Quality data, 1D input, 4D output, Constraint 11111111111111111+22222222222222222 adverse
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Figure: Adverse scenarios: constraints 11111111111111111+22222222222222222 and affine predictor. Left panels: adverse scenarios,
average 130% of the true average, right panels: regular scenarios.
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Quake classification problem, input 3D, output "2D"
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Figure: Earthquakes observations. An earthquake is a point with coordinates latitude, longitude
and focal depth (given by the color). Triangles: earthquakes which magnitude is above average.
Circles: below average.

data available at www.openml.org/search?type=data&id=772.
all notebooks: https://gitlab.emse.fr/marc.grossouvre/jointkrigingsupplementary/ ‘
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Quake classification problem - covariance

Chosen covariance function
A single covariance function (only one tested!):

k(x, x′) = σ2exp
(
−2

sin2((x1 − x ′1)/2)
θ21

− 2
sin2((x2 − x ′2)/2)

θ22

)
exp
(
−2

(x3 − x ′3)2

θ23

)
periodicity of longitude, latitude, not focal depth. Small nugget (rounded magnitudes).

Parameter estimation
The hyperparameters estimation has been treated separately on other train/test splits
to avoid overfitting the data (using 10 fold cross-validation).

Resulting values for θ are 2.3 for latitude, 0.9 for longitude and 196.8 for focal depth.
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Quake classification problem - prediction constraints 11111111111111111+22222222222222222
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Figure: Joint Kriging with two constraints 11111111111111111+22222222222222222. Top: membership degree of “P: magnitude is
above average”, bottom: membership degree of “N: magnitude is below average”, binarized
prediction (1 if membership degree of P is greater than 0.5). Left: 21km focal depth (=Q1).
Right: 68km (=Q3).
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Quake classification problem - benchmark

Affine with
  constrained output

Affine with
  weights summing to 1

With constrained
  output

With weights
  summing to 1

Simple

Random Forest
  (from benchmark)

Best model in benchmark
  (openML)

0.52 0.53 0.54 0.55 0.56 0.57

Predictive accuracy

M
o
d
e
l

seed

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

Among other methods, 

best model in external
openML benchmark

from external benchmark

Among 69 competitors,

Figure: Performances for 10 runs. Top 2: best OpenML model (kernel logistic regression) and
OpenML Random Forest. Bottom 5: Joint Kriging models. Dark red cross: average predictive
accuracy, the higher the better.

OpenML benchmark: 69 models, www.openml.org/search?type=task&id=4516.
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Quake classification problem - adverse scenario
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Figure: Adverse scenario, constraints 11111111111111111+22222222222222222. Top: adverse scenario, first class output average
constrained to be 65%. Bottom: regular scenario, output average constrained to 55.5%. Left:
21km focal depth. Right: 68km focal depth.
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Quake classification problem - four classes
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Figure: Affine Joint Kriging with constraints 11111111111111111+22222222222222222, magnitude thresholds 5.85, 5.95, 6.15.
bottom: class of greatest membership degree. Remark longitude circular coherence.
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Illustration on several datasets

Small benchmark on 9 datasets. Average ranks among 4 methods.

• Results seem competitive, even if more extensive benchmarks would be required.
• Not extensive enough for testing
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Conclusion

what is done

• Multi-output Kriging model, not necessarily Gaussian.
• Specific simplification: weights apply jointly to all outputs.
• Specific constraints, especially on predicted values.
• Specific affine model.

Pros

• Simple: computable in closed-form, drastically reduces hyperparameters number.
• Useful: interpretable, can interpolate data, uncertainty measurements, specific
covariances (e.g. periodicity). Constraints allows for external information, expert
judgments, adverse modelling, or homogenization needs such as fairness
constraints. For fuzzy classification, prescribed class percentages.
• Competitive: competes with state-of-the-art algorithms on an open benchmark.

Cons and perspectives

• Simplified: possible limitations for different regularities of outputs. Introduce
more complex covariances, model with higher complexity...
• Needs hyperparameters optimization: specific estimation procedures...
• Non-convex: possible membership degrees outside [0, 1]. Convex constraints...
• Broken continuous interpolation property with Constraint 22222222222222222. Modify predictor...
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Thank you for your attention !

• Details and proofs in the preprint
https://hal.science/hal-04208454.
• Available code & notebooks

https://gitlab.emse.fr/marc.grossouvre/jointkrigingsupplementary/

• Do not hesitate to send comments or references!
drulliere@emse.fr

Questions ?
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Notations I
locations
X set of locations (inputs/design points).
n, q number of observed locations, of prediction locations.
x any location. x1, . . . , xn are all observed locations.
x? any prediction location. x?1 , . . . , x?q are all prediction locations.
X? a random variable over prediction locations.
π = (πx?

1
, . . . , πx?

q ) the q × 1 distribution of X? over prediction locations.
γ = π>π an intermediate real value used in calculations.
outputs
p number of outputs (i.e. number of outputs).
Y(x) the p × 1 vector of outputs at location x.
µ = E [Y(x)] the p × 1 mean of Y(x), when constant over x.
Y = [Y(x1), . . . ,Y(xn)] all the p × n values of observed outputs.
Y? =

[
Y(x?1 ), . . . ,Y(x?q )

]
all p × q unknown outputs at prediction locations.

prediction
M(x?) a p × 1 predictor of Y(x?)
M =

[
M(x?1 ), . . . ,M(x?q )

]
the p × q matrix of all predictions.

α(x?) the n × 1 linear weights for the prediction in x?.
A =

[
(α(x?1 ), . . . ,α(x?q )

]
the n × q matrix of weights for all predictions.

m a given constant p × 1 vector of prescribed mean predicted values.
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Notations II

∆(x?) loss to be minimized for finding M(x?).
λ a q × 1 vector of Lagrange multipliers (relative to sum of weights)
λ′ a p × 1 vector of Lagrange multipliers (relative to predicted values)
u = YK−11n an intermediate p × 1 vector in calculations.
Z an additional p × 1 factor for affine predictions.
covariances
k(., .) a covariance function.
W a given symmetric positive definite matrix for computing norms.
h(x?) = E

[
Y>WY(x?)

]
a n × 1 covariance vector.

H = (h(x?1 , . . . , h(x?q ))) a n × q covariance matrix.
K = E

[
Y>WY

]
a n × n covariance matrix.

K̃, h̃(x?), H̃ other covariances using centred expressions.
δ = 1n>K−11n an intermediate real value in calculations.
P additional n × 1 covariance vector between Z and Y(xi )
Q additional q × 1 covariance vector between Z and Y(x?j )
miscellaneous
v a generic vector for defining norm or checking psd characteristic.
1n, 1p , 1q a vector of ones of size n, p, q respectively.
0n, 0p , 0q a vector of zeros of size n, p, q respectively.
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