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Motivation • Neural networks’ complicated landscape

• Training of deep neural networks ≈ SGD on a nonconvex loss function

• Lots of minimizers and lots of randomness (initialization, mini-batching, etc)

Image credit: losslandscape.com
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Problem of interest • Constant stepsize SGD

• Objective function 5 : ℝ3 → ℝ smooth nonconvex

• Gradient Descent

G=+1 = G= − [ ∇ 5 (G=)
stepsize

◦ Converges to some critical point depending solely on initialization

◦ If stepsize [ is small: close to gradient flow ¤-C = −∇ 5 (-C )
◦ Needs a full gradient evaluation  out-of-reach in large-scale learning
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Problem of interest • Constant stepsize SGD

• Objective function 5 : ℝ3 → ℝ smooth nonconvex

• Stochastic Gradient Descent (SGD) with decreasing step-size

G=+1 = G= −
1
=

Stochastic first-order oracle = what is computed︷                             ︸︸                             ︷[
∇ 5 (G=) + Z(G=;l=+1)

]
stepsize zero-mean noise

◦ Converges to some local minimum depending on initialization and noise

◦ Asymptotically close to gradient flow ¤-C = −∇ 5 (-C ) with probability one
◦ Can get trapped in local minima

Example Regularized ERM 5 (G) = 1
<

∑<
8=1 ℓ(G; b8) +

_
2 ‖G‖

2

SGD by sampling one example leads to Z(G;l) = ∇ℓ(G; bl) − 1
<

∑<
8=1 ∇ℓ(G; b8)

where l is sampled uniformly at random in {1, .., <}.
2



Problem of interest • Constant stepsize SGD

• Objective function 5 : ℝ3 → ℝ smooth nonconvex

• Stochastic Gradient Descent (SGD) with constant step-size

G=+1 = G= − [

[
∇ 5 (G=) + Z(G=;l=+1)

]
stepsize zero-mean noise

◦ No pointwise convergence, the exploration due to the noise does not vanish

◦ Very efficient in practice for machine learning problems

Question: What is the asymptotic behavior of SGD?
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Running example • Himmelblau function

• 5 (G, ~) = (G2 + ~ − 11)2 + (G + ~2 − 7)2
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Literature • SGDw/ constant stepize

• Lines of work that do not characterize the asymptotic behavior

◦ Sampling (MCMC, Langevin) scaling of the noise differs from SGD

G=+1 = G= − [∇ 5 (G=) +
√

2[ b= with b= ∼ N(0, f2)

◦ Continuous-time limit (SDE) only valid on finite time horizons [Li et al., 2017]

d-C = −∇ 5 (-C ) dC +
√

2[ cov(Z(-C ; ·)) d,C

• Classical results in optimization

◦ near-critical in average �

[
1
#

#−1∑
==0

‖∇ 5 (G=)‖2

]
= O

(
1
√
#

)
[Lan, 2012]

◦ avoids saddle points [Brandière & Duflo, 1996; Mertikopoulos et al., 2020]
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This presentation • Long run behavior of SGD

• Which critical points (local minima) are visited the most in the long run?

• Theory of large deviations and random perturbations of dynamical systems

◦ Estimate the probability of rare events, such as SGD escaping a local minima

• (Almost) Realistic assumptions on the noise and objective

• Joint work with Waïss Azizian, Panayotis Mertikopoulos, JérômeMalick

◦ arXiv 2406.09241 ICML 2024

◦ arXiv 2503.16398 Fresh out!
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Setup & Assumptions



Assumptions • Objective & Noise

• Objective function 5

◦ smooth �2 and ∇ 5 is V-Lipschitz continuous
◦ coercive lim‖G ‖→∞ 5 (G) = +∞
◦ gradient coercive lim‖G ‖→∞ ‖∇ 5 (G)‖ = +∞

• Noise term Z
◦ proper �[Z(G;l)] = 0 and cov(Z(G;l)) � 0 for all G ∈ ℝ3

◦ limited growth Z is�2 and Z(G;l) = O(‖G‖) almost surely
◦ sub-Gaussian log�[exp(〈?, Z(G;l)〉)] ≤ f2 ‖ ?‖2

2

Recall SGD

G=+1 = G= − [ [∇ 5 (G=) + Z(G=;l=+1)]
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Example Regularized ERM 5 (G) = 1
<

∑<
8=1 ℓ(G; b8) +

_
2 ‖G‖

2

SGD by sampling one example leads to Z(G;l) = ∇ℓ(G; bl) − 1
<

∑<
8=1 ∇ℓ(G; b8)

where l is sampled uniformly at random in {1, .., <}. 6



Assumptions • Critical points

• Critical set crit( 5 ) := {G ∈ ℝ3 : ∇ 5 (G) = 0}
◦ finite number of smoothly connected components crit( 5 ) = {K1,K2, ...,K }

Not that restrictiveHolds for definable functions
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Asymptotic behavior • How to characterize the long run of SGD?

• We focus on the invariant measure `
[
∞ of SGD

◦ defining property

G ∼ `
[
∞ =⇒ G − [ [∇ 5 (G) + Z(G;l)] ∼ `

[
∞

◦ weak* limit of the mean occupation measure

`= (B) = �

[
1
=

=−1∑
:=0

1{G: ∈ B}
]

• We analyze the relative measures of the critical components {K8} 8=1
◦ Concentration near minimizers as [ → 0
◦ Comparison of critical components `

[
∞ (K8)/`[∞ (K 9 )
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Large Deviations Approach



Discrete time • First guarantees and limitations

G=+1 = G= − [ [∇ 5 (G=) + Z(G=;l=+1)] = G0 − [
=∑
:=0

∇ 5 (G:) + Z(G: ;l:)

• Markov chain

◦ weak Feller + Lyapunov condition⇒∃ invariant measure [Douc et al., 2018]

◦ No useful characterization of the invariant measure known

• “Discrete-time” Large deviation principle by Cramér’s theorem

ℙ

[
1
=

=∑
:=0

∇ 5 (G) + Z(G;l:) ∈ B
]
∼=→∞ exp

(
−= inf

{∈B
L(G, {)

)
◦ Characterizes the probability of staying in any Borel B and in particular minimizers

neighborhoods...

But in SGD, G is not fixed but highly correlated!

◦ Relies on some Lagrangian function

(typically L(G, {) ≥ 0 and L(G, {) = 0 ⇐⇒ { = −∇ 5 (G))
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Result 1 • a LDP for SGD

• Ingredients for comparing SGD w/ a smooth curve W : [0, )] → ℝ3

◦ Cumulant Generating Function  (G, ?) := log�[exp(〈?, Z(G;l)〉)] + 〈∇ 5 (G), ?〉
◦ Lagrangian L(G, {) :=  ∗ (G,−{) is its convex conjugate (in {)
◦ Action functional S) [W] =

∫ )
0 L(W(C), ¤W(C)) 3C

Result 1 As [ → 0

ℙ

(
)

[
steps of SGD ≈ W

)
≈ exp

(
−S) [W]

[

)
• Interpretation

◦ Trajectories of SGD tend to concentrate near action-minimizing curves

◦ Gradient flows are privileged as L(G, {) ≥ 0 and L(G, {) = 0 ⇐⇒ { = −∇ 5 (G)

Gaussian case L(G, {) = ‖{+∇ 5 (G ) ‖2

2f2

and S) [W] =
∫ )
0

‖ ¤W (C )+∇ 5 (W (C ) ) ‖2

2f2 3C
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Proof sketch • Discrete to continuous time

• Discrete time

G=+1 = G= − [ [∇ 5 (G=) + Z(G=;l=+1)]

• Continuous time

◦ “interpolated” trajectory for any = ≥ 0, C ∈ [[=, [(= + 1)]

-C = G= +
(
C

[
− =

)
(G=+1 − G=)

◦ continuous “discretized noise” trajectory for any C > 0 with /0 = G0

¤/C = −∇ 5 (/C ) + Z(/C , lbC/[c)

dist[0,) ] (-, /) ≤ 2[ for some 2

Remarks -C is natural but /C goes better with Lagrangians in the analysis

Time is accelerated as ΔC = 1 ↔ Δ= = 1/[ to have “enough noise” from C to C + 1

The SDE d-C = −∇ 5 (-C ) dC +
√

2[ cov(Z(-C ; ·)) d,C is different, has the wrong scale for the noise, and
the discretization or the convergence is exponentially bad in [ [ Raginsky et al., 2017 ; Li et al., 2019]
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Proof sketch • Randomly perturbed dynamical systems

Proposition As [ → 0,

ℙ

(
)

[
steps of SGD ≈ W

)
≈ ℙ

(
dist0,) (/, W) is small

)
≈ exp

(
−S) [W]

[

)
• Idea inspired from [Freidlin and Wentzell, 1998]

◦ {0, 1/[, .., )/[} iterates of SGD ≈ [0, )] trajectory of ¤/C = −∇ 5 (/C ) + Z(/C , lbC/[c)
◦ Trajectory of /C is a point in the space of continuous curves C) := C([0, )],ℝ3)
◦ Derive a large deviations principle for curves W ∈ C)

Gaussian case L(G, {) = ‖{+∇ 5 (G ) ‖2

2f2 and S) [W] =
∫ )
0

‖ ¤W (C )+∇ 5 (W (C ) ) ‖2

2f2 3C
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Consequences • a LDP for SGD

Result 1 As [ → 0

ℙ

(
)

[
steps of SGD ≈ W

)
≈ exp

(
−S) [W]

[

)
• What about critical components? crit( 5 ) := {G ∈ ℝ3 : ∇ 5 (G) = 0} = {K1,K2, ...,K }

◦ SGD does concentrates on critical points by following the gradient flow

◦ Next step is to compare paths between critical components

Lemma Given crit( 5 ) ⊂ U ⊂ C with U
open, C compact, for [ > 0 small enough

ℙ( SGD reachesU in ≥ = steps) ≤ 4−Ω(=/[)
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Transitions between critical

components



Quasi-potentials • A transitioning cost

• Definition following [Kifer, 1988]

�(G, G′) := inf{S) [W] : W ∈ C) , W(0) = G, W()) = G′, ) ∈ ℕ}

◦ fixes some transition time )

◦ if there is a gradient flow going from G to G′, then �(G, G′) = 0

• Potentials for transitioning between critical components

�8 9 := inf{S) [W] : W ∈ C) , W(0) ∈ K8 , W()) ∈ K 9 , ) ∈ ℕ}

◦ From Result 1, we have for [ > 0 small enough

ℙ
(
SGD transitions fromK8 toK 9

)
≈ exp

(
−
�8 9

[

)
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Result 2 • Induced chain on critical components

• Consider the homogeneous discrete chain on {1, ..,  }

I= = 8 if the =-th visited component isK8 (up to a small neighborhood)

◦ Transitions probabilities are given by the �8 9

Result 2 The invariant distribution c of I= for [ > 0 small enough satisfies

c(8) ∝ exp
(
−�8
[

)
with �8 = min

)8∈T8

∑
9 ,:∈)8

� 9:

the energy ofK8 defined as the minimal weight of a spanning tree rooted at 8

• From Result 1, critical neighborhoods are exponentially more visited so

the invariant distribution of I= captures the long-run behavior of SGD 15



Main Result



Main result • How to characterize the long run of SGD?

Theorem Given Y > 0 and U8 sufficiently small neighborhoods of the components of

crit( 5 ). Then, for sufficiently small [ > 0, we have
• Concentration on crit( 5 ) there is some _ > 0 s.t.

`
[
∞ (∪ 8=1U8) ≥ 1 − 4−_/[

• Boltzmann-Gibbs distribution for all 8

`
[
∞ (U8) ∝ exp

(
−�8 + O(Y)

[

)
• Concentration on ground states givenU0 neighborhood of arg min8 �8

`
[
∞ (U0) ≥ 1 − 4−_0/[ for some _0 > 0
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Example • Himmelblau with Gaussian noise

• Assume that Z(G;l) ∼ N (0, f2�)
◦ �51 = 0 �15 = 2( 5 (G5) − 5 (G1))/f2 for (G1, G5) ∈ K1 × K5
◦ �8 = 2 5 (G8)/f2 for any G8 ∈ K8
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Going Further • Reaching the global minimum

• Building on the transition probabilities before,

we can characterize the average time to reach the global minimum

• Himmelblau function: 9 critical points, 4 global min

• Assume as before that Z(G;l) ∼ N (0, f2�)
◦ We can show that �[time to reach a global min ] does not depend on [

 
goodmatch!

◦ Here we start near ?3 (we can easily go to ?5 !)
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Conclusion • What is the long-run behavior of SGD?

• We introduce a theory of large deviations for SGD in nonconvex problems

◦ Sound approach for the long-run of SGD

◦ Precise adaptation of random perturbations of dynamical systems’ theory

• We characterize the asymptotic distribution of SGD

◦ Critical regions are visited exponentially more often than non-critical regions

◦ Critical components are visited with probability exponentially proportional to

their energy, not necessarily their function value

• Future steps in the comprehension of stochastic methods in nonconvex landscapes

◦ More realistic algorithms (momentum, adam)

◦ Links with neural networks landscape and generalization
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