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Motivation e Neural networks’ complicated landscap

e Training of deep neural networks ~ SGD on a nonconvex loss function
e Lots of minimizers and lots of randomness (initialization, mini-batching, etc)
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Problem of interest e Constant stepsize SGD

e Objective function f: R?Y — R smooth nonconvex

e Gradient Descent

Xn+l = Xn — 1] Vf(xn)
stepsize

o Converges to some critical point depending solely on initialization
o If stepsize n7 is small: close to gradient flow X, = -V £(X,)
o Needs a full gradient evaluation ~» out-of-reach in large-scale learning



Problem of interest e Constant stepsize SGD

e Objective function f: R?Y — R smooth nonconvex
e Stochastic Gradient Descent (SGD) with decreasing step-size

Stochastic first-order oracle = what is computed

1
Xn+l = Xp — ; Vf(xn) +  Z(Xn; Wns1)

stepsize zero-mean noise

o Converges to some local minimum depending on initialization and noise
o Asymptotically close to gradient flow X, = —V f(X;) with probability one
o Can get trapped in local minima

Example Regularized ERM  f(x) = £ 2 £(x;&;) + 4|Ix]|?

SGD by sampling one example leads to Z(x; w) = Vl(x; &) — % X, Ve(xs i)

where w is sampled uniformly at randomiin {1, .., m}.



Problem of interest e Constant stepsize SGD

e Objective function f: R?Y — R smooth nonconvex

e Stochastic Gradient Descent (SGD) with constant step-size

Xpe1 =Xp — 0 |V (x0) +  Z(Xn; One1)

stepsize zero-mean noise

o No pointwise convergence, the exploration due to the noise does not vanish
o Very efficient in practice for machine learning problems

Question: What is the asymptotic behavior of SGD?



Running example e Himmelblau function

o flx,y)=(x2+y—-11)2+ (x+y*-7)?




Literature e SGD w/ constant stepize

e Lines of work that do not characterize the asymptotic behavior
o Sampling (MCMC, Langevin) scaling of the noise differs from SGD

Xne1 =Xn =V F(x,) +20&,  with&, ~ N(0,02)

o Continuous-time limit (SDE) only valid on finite time horizons [Liet al., 2017]

dX[ =] —Vf(Xt) dr + 27] COV(Z(Xt; )) dWr

e Classical results in optimization

1 N-1 1
N > ||Vf(xn)||21 =0 (\/_ﬁ) [Lan, 2012]

o near-critical in average E
n=0

o avoids saddle points [Brandiére & Duflo, 1996; Mertikopoulos et al., 2020]



This presentation e Long run behavior of SGD

Which critical points (local minima) are visited the most in the long run?

Theory of large deviations and random perturbations of dynamical systems
o Estimate the probability of rare events, such as SGD escaping a local minima

(Almost) Realistic assumptions on the noise and objective

Joint work with Waiss Azizian, Panayotis Mertikopoulos, Jérome Malick

o arXiv2406.09241 ICML 2024
o arXiv2503.16398 Fresh out!


https://arxiv.org/abs/2406.09241
https://arxiv.org/abs/2503.16398

Setup & Assumptions



Assumptions e Objective & Noise

e Objective function f
o smooth C? and V£ is B-Lipschitz continuous
o coercive lm ) yjj—eo f(X) = +00
o gradient coercive lim| |- [[Vf(X)] = 400

e Noise term Z
o proper E[Z(x;w)] = 0and cov(Z(x; w)) > 0 forallx € R?
o limited growth Zis C? and Z(x; w) = O(||x||) almost surely
o sub-Gaussian log E[exp({p,Z(x;w)))] < M

Recall SGD

Xpi1 = Xn =1 [Vf(xn) + Z(xn; wpe1)]



Assumptions e Objective & Noise

e Objective function f
o smooth C? and V£ is B-Lipschitz continuous
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Assumptions e Critical points

e Critical set crit(f) = {x e R : Vf(x) = 0}
o finite number of smoothly connected components crit(f) = {X1, Ko, ..., Kk }

Not that restrictive Holds for definable functions



Asymptotic behavior e How to characterize the long run of SGD?

e We focus on the invariant measure u.! of SGD
o defining property

x~pd = x=n[Vfx) +Z(x;w)] ~ pd

o weak* limit of the mean occupation measure

Un(8B) = E

1 n—1
- Z ]l{xk € B}
" =0

e We analyze the relative measures of the critical components {‘Ki}{i a

o Concentration near minimizersasn — 0
o Comparison of critical components uJ (%;)/ud (K;)



Large Deviations Approach




Discretetime e First guarantees and limitations

Xnat = Xp = 0 [V (Xn) + Z(xn; 0na1)] = x0 =7 D VF(x1) + Z(xx; i)
k=0

e Markov chain
o weak Feller + Lyapunov condition = Jinvariant measure [Douc et al., 2018]
o No useful characterization of the invariant measure known

e “Discrete-time” Large deviation principle by Cramér’s theorem

P lin(x)+Z(x;wk) €EB
=0

~n—co €XP (—n inf £L(x, v))
veB

o Characterizes the probability of staying in any Borel 8 and in particular minimizers
neighborhoods...

o Relies on some Lagrangian function
(typically L(x,v) > 0and L(x,v) =0 & v=-Vf(x))



Discretetime e First guarantees and limitations

Xnat = Xp = 0 [V (Xn) + Z(xn; 0na1)] = x0 =7 D VF(x1) + Z(xx; i)
k=0

e Markov chain
o weak Feller + Lyapunov condition = Jinvariant measure [Douc et al., 2018]
o No useful characterization of the invariant measure known

e “Discrete-time” Large deviation principle by Cramér’s theorem

P 1in( x )+Z( x ;wg) €eB
=0

~n—sco EXP (—n inf £L(/x , v))
veB

o Characterizes the probability of staying in any Borel 8 and in particular minimizers
neighborhoods... Butin SGD, x is not fixed but highly correlated!

o Relies on some Lagrangian function
(typically L(x,v) > 0and L(x,v) =0 & v=-Vf(x))



Result1 e aLDP forSGD

e Ingredients for comparing SGD w/ a smooth curve y : [0,T] — R¢
o Cumulant Generating Function K (x, p) = log E[exp({p, Z(x; w)))] + (Vf(x), p)
o Lagrangian L(x,v) = K*(x, —v) is its convex conjugate (in v)
o Action functional Sr[y] = fOTL(y(t),)'/(t)) dt

Result1Asn — 0

T
P ; steps of SGD ~ ’y) ~ exp(_m)

e Interpretation
o Trajectories of SGD tend to concentrate near action-minimizing curves
o Gradient flows are privileged as £L(x,v) > 0and L(x,v) =0 < v=-Vf(x)

> 2
Gaussian case L(x,v) = %

and Sply] = [T LGOI 4



Proof sketch e Discrete to continuous time

e Discrete time
Xnel =Xp — 1] [Vf(xn) + Z(xn§ wn+1)]

e Continuous time
o “interpolated” trajectory foranyn > 0, t € [nn,n(n + 1)]

t
Xi =xn+ (; - n)(xn+1 —Xp)
o continuous “discretized noise” trajectory for any ¢ > 0 with Zy = xq
Zt = _Vf(zt) +2(Z;, w[r/n])

dist[o,71(X, Z) < cn for some ¢

Remarks X; is natural but Z; goes better with Lagrangians in the analysis
Time is accelerated as Ar = 1 <> An = 1/n to have “"enough noise” fromrtor + 1

The SDE dX; = -V f(X;) df + /21 cov(Z(X;; -)) AW, is different, has the wrong scale for the noise, and 1
the discretization or the convergence is exponentially bad in n [ Raginsky et al. 2017 - Liet al. 2019]



Proof sketch e Randomly perturbed dynamical systems

Proposition Asn — 0,

]P(Z steps of SGD = y) ~ P(disto,7(Z,y) issmall ) ~ exp(—M)
n n

e Idea inspired from [Freidlin and Wentzell, 1998]
o {0,1/n,..,T/n} iterates of SGD ~ [0, T] trajectory of Z, = =V f(Z,) + Z(Z:, w|1/n))
o Trajectory of Z; is a point in the space of continuous curves Cr = C([0, T], R%)
o Derive a large deviations principle for curvesy € Cr

Gaussian case £(x,v) = ||U+V2J;_(2X)||2 and Sr[y] = f(JT HV(!‘)+Z£-(27(Z))”2 dt



Consequences e alLDP for SGD

Result1Asnp — 0

]P(Z steps of SGD =~ 7) ~ exp(_ST[)’] )
T n

e What about critical components? crit(f) := {x € R? : Vf(x) = 0} = {K1, Ko, ..., Kk }
o SGD does concentrates on critical points by following the gradient flow
o Next step is to compare paths between critical components

Lemma Given crit(f) ¢ U c C with U
open, C compact, for n > 0 small enough

P( SGD reaches U in > n steps) < e~ /)




Transitions between critical
components




Quasi-potentials e A transitioning cost

e Definition following [Kifer, 1988]
B(x,x") =inf{Sr[y] : v € Cr,y(0) = x,y(T) =x",T € N}

o fixes some transition time T
o if there is a gradient flow going from x to x’, then B(x,x’) = 0

e Potentials for transitioning between critical components
B;j =inf{Sr[y] : ¥y € Cr,y(0) e Ki, y(T) € K;, T € N}

o From Result 1, we have for n > 0 small enough

By
IP(SGD transitions from K; to ;) ~ eXp(—Tj)



Result2 e Induced chain on critical components

e Consider the homogeneous discrete chainon {1, .., K}

zn = i if the n-th visited component is K; (up to a small neighborhood)

o Transitions probabilities are given by the B;;
-

Result 2 The invariant distribution x of z,, for n > 0 small enough satisfies

n(7) ocexp(——l) with E; = min Z Bji
n T;€7; j.keT;

the energy of K; defined as the minimal weight of a spanning tree rooted at i

e From Result 1, critical neighborhoods are exponentially more visited so
the invariant distribution of z,, captures the long-run behavior of SGD 5



Main Result




Mainresult e How to characterize the long run of SGD?

Theorem Given ¢ > 0 and U; sufficiently small neighborhoods of the components of |
crit(f). Then, for sufficiently small > 0, we have

e Concentration on crit( f) thereissome 1 > 0s.t.
pL(UE U) 21— e

e Boltzmann-Gibbs distribution for all i

(U exp(—E"+—O(8))

n

e Concentration on ground states given Uy neighborhood of arg min; E;

ull (Up) > 1 - e/ forsome A9 >0




Example e Himmelblau with Gaussian noise

e Assume that Z(x; w) ~ N(0, o)
o Bs1 =0 Bis=2(f(x5) — f(x1))/0? for (x1,x5) € Ki X K5
o E; =2f(x;)/o? forany x; € K;
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Example e Himmelblau with Gaussian noise

e Assume that Z(x; w) ~ N(0, o)
o Bs1 =0 Bis=2(f(x5) — f(x1))/0? for (x1,x5) € Ki X K5
o E; =2f(x;)/o? forany x; € K;




Going Further e Reaching the global minimum

¢ Building on the transition probabilities before,
we can characterize the average time to reach the global minimum
e Himmelblau function: 9 critical points, 4 global min
e Assume as before that Z(x; w) ~ N (0, c21)
o We can show that E[time to reach a global min | does not depend on 7
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Going Further e Reaching the global minimum

¢ Building on the transition probabilities before,
we can characterize the average time to reach the global minimum
e Three-humps camel function: 5 critical points (p;), p1 is the global min
e Assume as before that Z(x; w) ~ N (0, c21)
o We canshow that E[time toreach p;] ~ exp(

2(f(p2)-f(ps)) )

no?
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Going Further e Reaching the global minimum

¢ Building on the transition probabilities before,

we can characterize the average time to reach the global minimum
e Three-humps camel function: 5 critical points (p;), p1 is the global min
e Assume as before that Z(x; w) ~ N (0, c21)

o We can show that E[time to reach p;] ~ exp (2L 22=f(ps))

5))y > good match!
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Conclusion e Whatis the long-run behavior of SGD?

e We introduce a theory of large deviations for SGD in nonconvex problems
o Sound approach for the long-run of SGD
o Precise adaptation of random perturbations of dynamical systems’ theory
e We characterize the asymptotic distribution of SGD
o Critical regions are visited exponentially more often than non-critical regions
o Critical components are visited with probability exponentially proportional to
their energy, not necessarily their function value
e Future steps in the comprehension of stochastic methods in nonconvex landscapes

o More realistic algorithms (momentum, adam)
o Links with neural networks landscape and generalization



Thank you for your attention
www.iutzeler.org
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