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Gaussian processes

The statistical problem of recovering an unknown function f from the training
samples {(x;,y;}", with Gaussian noise is considered :

i.i.d. 2 .
i=fxi)+ &, & ~ N(0,0%),i=1,...,n. 1
yi = f(z:i) + ¢ € (0,0%), i n (1)

noise
» fis an unknown function representing a physical phenomenon :

f: XCRY—R.

> The data y= f(x) +e€ GRTL, with X = [xl,"'7mn]T S RnXd and
€=[e1,...,6,) " €R™



Gaussian processes

The statistical problem of recovering an unknown function f from the training
samples {(x;,y;}"_, with Gaussian noise is considered :
pid. .
yi=f(x)+ e, & < N(0,6%,i=1,...,n. (1)

noise
» fis an unknown function representing a physical phenomenon :

fi XCcR'—R
> The data y = f(X) + e € R", with X = [zy,...,2,]" € R"*? and
€=[e1,...,6,) " €R™

Definition (Gaussian processes)

Let (Y (x))zex be a stochastic process on X such that E[Y (x)?] < +oc. Then
> mean function : u(x) = E[Y (x)];
» covariance function : k(z,z') = Cov(Y (x),Y (z)).

A Gaussian process (GP) Y, i.e., Y ~ GP(u, k), is a stochastic process s.t.

Gaussian vector

[Y(xl)),Y(wn)]TNN( |2 K )
~— ~~

vector matrix




Simulation of Gaussian processes

TABLE: Some popular covariance functions k(z, ') used in Machine Learning.
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FIGURE: Some popular covariance functions (left) and GP sample paths using the
Matérn v = 3/2 kernel (right).



Simulation of Gaussian processes
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FIGURE: Ten zero-mean GP sample paths using the SE covariance function (top) and
the Matérn covariance (bottom). The length-scale parameter £ if fixed at 0.1 (left) and
at 0.4 (right).
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Gaussian process regression (GPR)

Gaussian process regression

@ GPR is based on assuming a GP prior on the underlying function f.
o If Y ~GP(0,k), then

{Y|y} ~ GP(ji, k),
where the conditional mean i and covariance function k: are given as follows :
prediction - ji(z) = E[Y(z)|y] = k(z,X) " (k(X,X) + 02In)_1 Y;
Cl—  k(za') =kx, ) — k(z,X) T (X, X) + 0°L,) " k(z', X)

v

GPR interpolation GPR with noisy observations
o - - Slzsnp:fth;hs Yk GPR paths
— target fur?ction a ~ - mean of paths
N 9 N —— target fungtion
o
C\Il_ I
5 3
T T T T T T T T T T T T T T T T
-4 -3 -2 -1 X 0 1 2 3 -4 -3 -2 -1 X 0 1 2 3
FIGURE: GPR : interpolation model (o = 0, left) and noisy model (o = 0.5, right).
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Bayesian linear models with large datasets

Definition (Finite-dimensional Bayesian linear models)

(Y(x))zex is approximated by a finite-dimensional Bayesian linear model :

N
Y(@)~ Y &¢;(@) = é(a)¢ =YV (2), zea, )
=1
where € ~ N (0, 72K) with T2 K a positive-definite covariance matrix and ¢(-) is a deterministic
function. Examples : KLE, Bernstein polynomials, B-splines, Hermite polynomials.




Bayesian linear models with large datasets

Definition (Finite-dimensional Bayesian linear models)

(Y(x))zex is approximated by a finite-dimensional Bayesian linear model :
N
@)~ Y 6@ = s@t =YV (@), wex, ®)
j=1

where € ~ N (0, 72K) with T2 K a positive-definite covariance matrix and ¢(-) is a deterministic
function. Examples : KLE, Bernstein polynomials, B-splines, Hermite polynomials.

Bayesian linear models with large datasets
@ Data : The dataset {YV(X) + € = y} can be written in matrix form as follows :
XE+e=y,

where € = [e1,. . ., en]T is a zero-mean Gaussian noise vector with covariance matrix o21,,,
and X := ¢(X) € R"*N.

@ Posterior distribution : Conditionally on the observations y
{£1X,y} ~ N (1, K) ,  where, 3)

{ p=7(XK) (P2 XKX" +0°1,) " y; (@)

K=K - ™(XK)T(r’XKX" +5%I,) ' XK.




Bayesian linear models with large datasets

Definition (Finite-dimensional Bayesian linear models)

(Y(x))zex is approximated by a finite-dimensional Bayesian linear model :
N
@)~ Y 6@ = s@t =YV (@), wex, ®)
j=1

where € ~ N (0, 72K) with T2 K a positive-definite covariance matrix and ¢(-) is a deterministic
function. Examples : KLE, Bernstein polynomials, B-splines, Hermite polynomials.

Bayesian linear models with large datasets

@ Data : The dataset {YV(X) + € = y} can be written in matrix form as follows :

X +e=y,

where € = [e1,. . ., en]T is a zero-mean Gaussian noise vector with covariance matrix o21,,,
and X := ¢(X) € R"*N.

@ Posterior distribution : Conditionally on the observations y

{61X,y} ~ N (1, K), where, (3)

p=7XK) (P XKX" +0%L,) y; )

K=K - ™(XK)T(r’XKX" +5%I,) ' XK.
@ The predictive equations in (4) require a matrix inversion of dimension n X n, making this
approach infeasible for a large number of observations n.

11 /
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Markov chain Monte Carlo (MCMC)

@ According to [Williams and Rasmussen, 2006, Sect. 2.1.1] and Bayes' rule,

_ p(ylX,€)p§)
p(é|1X,y) = T olX) (5)

where p(y|X) is the normalizing constant, also known as the marginal
likelihood. It is independent of £ and given by

pulX) = [ p(elX.en()e

@ By developing the likelihood p(y|X,y) and the prior p(§) in (5), we obtain
1 1 _
HEX) o (5l X€Tly - Xe) ) o (556 K7€)

e (~ple— 7B e )
where .
{XTX/UQ—FKA/TQ] XTy/o%

"o . ™)
> = |:XTX/O'2 + K_1/7'2} .



Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo

The posterior pdf in (6) is proportional to the product of a likelihood function and
a zero-mean Gaussian :

p(€|X,y) o exp (—2;2[1/ — X¢) [y - X&]) exp (—#gﬁc%)

L(&): likelihood function Gaussian prior
o L(EN(£0,7°K). (8)
The logarithm function in (8), which has a computational complexity of order

O(nN) will be evaluated at each MCMC iteration.
» Sampling : Metropolis-Hastings (MH) proposals [Neal, 1999] :

g =pr+V1-p% v~N0OT°K), 9)
where p € [—1,1] is a step-size parameter, £ is the current state, and £’ is

the proposal state.

Recall that the MH acceptance ratio, v = min {1, L(¢')/L(£)} depends solely on
the likelihood ratio and is independent of p.

14
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Matheron’s update rule

Proposition (Matheron's update rule (MUR))

Let & ~ N(u,72K). Suppose that X € R"*N is a given matrix of rank n, and
y € R" js an output vector representing the data i.e., X& =vy. Then

EX) L € +(XK)T (XKXT) (y-Xe). (10)
;i:r/ update

Additionally, we have
SOEX u} L o0 |6+ (XB)T (xEXT) (5= X8)|.

where ¢(-) is the basis vector appearing in the Bayesian linear model.

16




Matheron’s update rule

Proposition (Matheron's update rule (MUR))

Let & ~ N(u,72K). Suppose that X € R"*N is a given matrix of rank n, and
y € R" js an output vector representing the data i.e., X& =vy. Then

EX) L € +(XK)T (XKXT) (y-Xe). (10)
;;r/ update

Additionally, we have
SOEX u} L o0 |6+ (XB)T (xEXT) (5= X8)|.

where ¢(-) is the basis vector appearing in the Bayesian linear model.

MUR with Noisy observations

More generally, if the data are observed with independent Gaussian noise
{X €&+ €=y}, where € ~ N(0,0°1,), then

€1X,y} L ¢+ 2(XK)T (TQXKXT + UQIn)il(y ~Xt—e¢. (11)

n X n matrix




Matheron’s update rule

Prior sample path Prior and update sample paths
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FIGURE: Visual representation of the MUR (noise-free case). Top left : a single path of
the prior together with the data (green stars). Top right : the corresponding update
sample path, derived from (10) is displayed as black dashed curve. Bottom : posterior
paths (gray solid curves) are obtained by combining the prior and the update as per (10).
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Matheron's update rule for large datasets

Proposition (MUR for large datasets [Maatouk et al., 2025])

Under the same settings as Proposition 1, we have

{Sley}i\ﬁfﬁ(XTX/UQ+K_1/Tz)_1XT(y—X£—6)/0’2,

prior update

where y — X & — € represents the residual and o is the variance of the noise.

Comments

| A

@ The update part requires a matrix inversion of dimension NV x N instead of
n X n.

@ As for the MCMC approaches, sampling is performed before conditioning
rather than after.

@ Unlike MCMC approaches, we do not need to evaluate a likelihood function
at each iteration.

18



Matheron's update rule for large datasets

Before proving Proposition 2, let us present the following Lemma.

Lemma

Consider three random vectors V1 € RY, Vo € R™ and V3 € RN s.t.
d
Vi =f(Va)+ Vs,

where f is a measurable function of V5 and where V5 is independent of V 3.
Then,

{V1|Vy =6} < () + Vs,

for any 8 € R™.

Démonstration.

The proof is provided in [Wilson et al., 2021, Lemma 2]. ]




Matheron's update rule for large datasets

Proof of Proposition 2 Maatouk, Rulliére and Bay (2025).

From the equivalent between the two direct approaches Equations (4) and (7), we
have

(XT"X/o?+ K ' )1)X T o> =7 KX T (2 X KX +5°1,)"Y.  (12)
Let V=& — (X' X /o2 + K '/72)"1X T (X ¢ + €)/02. Additionally, we have
E¢|Xt+e=(X"X/?+ K /)X T(XE+¢€)/0.
Thus, we can write :

§ = E[|X{+e+(E-E[g|IXE+€])
(XTX /o> + K1 /m) X T (Xt 4 €) /0 + V.

Let Vi =& and Vo = XE& + €. Since V5 and V3 are jointly Gaussian but
uncorrelated, it follows that they are independent. O




Matheron's update rule for large datasets

Rest of the proof.

Indeed,

Cov(Vy,Vs) = Cov(X€+eé—(X'X/o?+ K1) 1 X (XE+€)/0?)
= XK - Var(Xé+e)[(X'X /o> + K1) 1X T /6?7
= ’XK - (r’XKX" +0%1)(*XKX" +5°1,) "7’ XK
= XK -7°XK =0,.y,

where 0,, y is the n X N zero matrix. The second-to-last line is done using

Equation (12). Setting f(V3) = (X' X /o? + K1 /72)"1X "V3/0? and using
Lemma 1, we obtain
{ex,y} £ X'X/o* +K /)X y/o” +£ -
(X"X /o2 + K71 )m2) 71X T (X¢ +€) /0>

E+(XTX/?+ K1) 1 X T (y — X¢—€)/02.

Il

Hence, the claim follows. O
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[llustrative examples 1D

MCMC-ESS and dimension N = 50 MUR-bData and dimension N = 50
Number of samples n = 100 and runtime (s) = 0.715 Number of samples n = 100 and runtime (s) = 0.039
w0 _| —— true function w0 _| —— true function
o — = posterior mean o — = posterior mean
Q] Q]
o o
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FIGURE: Top : Performance accuracy of the finite-dimensional Bayesian linear for N = 50. The

number of samples (green stars) is fixed at n = 100. The gray shaded area represents the 95%
confidence interval based on 6,000 sample paths. The highly efficient MCMC approach is
employed in the left panel, while the proposed MUR for big data is applied in the right panel.
Bottom : Runtime in seconds for generating 15,000 posterior sample paths as a function of the
number of samples for the two competing approaches. s



lllustrative examples 1D (big data and extreme case)

MCMC-ESS and dimension N = 50 MUR-bData and dimension N = 50
Number of samples n = 15500 and runtime (s) = 53.5 Number of samples n = 15500 and runtime (s) = 4.9
0 — true function 0 — true function
o] —.—. posterior meal o~| —.—. posterior meal
Q| |
o o
Q

T T T T T I i T T T T T I
'00 02 04 06 08 10 00 02 04 06 08 10
FIGURE: Same settings as Fig. 5 except the number of samples n which is fixed at
15,500 instead of 100. There are 15490 observations available in the first half of the
domain, while only 10 are available in the second. Unlike MUR-bData, the 95%
confidence interval (gray shaded area) of the MCMC-ESS approach does not closely

follow the posterior mean (blue dashed curve).
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Real-world diamond data

Now, we apply the two strategies developed in this presentation to real-world
diamond data. This dataset consists of the prices in US dollars (326%-18,823%) of
n = 53,940 diamonds as a function of their carat, i.e., weight of the diamond

(0.2-5.01).

MCMC-ESS with n = 53940
runtime (s) = 19.21 and Energy measure = 0.07

MUR-bData with n = 53940

runtime (s) = 1.39 and Energy measure = 0.07

N £ P N ¥ * G-l
5] A i
ISE - T S i gt
[To) = B - -
(O Rl * ** o * **
2 L 2 5,
Q * Q *
o * o *
8— = posterior mean 8— = posterior mean
0 * data o] *  data
o o
I I I I I I I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
carat carat

FIGURE: Accuracy estimation of the price of n = 53,940 diamonds as a function of
carat. The two developed strategies are employed MCMC-ESS (left panel) and

MUR-bData (right panel). The computational running time of generating 1,000 sample
paths and the energy measure criterion are displayed in the main of each panel.
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lllustrative examples 2D

True function

1.5
1.0
0.5
0.0
/ -0.5
Mean a posteriori estimate (MCMC-ESS) Mean a posteriori estimate (MUR-| bData)
Sample size n = 1e+05 and runtime (s) = 90.237 Sample size n = 1e+05 and runtlme = 3.669
b3
0.5 ke 0.5
0.0 0.0
-0.5 \ -0.5

F1GURE: Computational running time for generating 2,000 surfaces using MCMC (left)
and MUR-bData (right) on large datasets. The number of observations is n = 100, OOO.QQ



Table of Contents |

@ Conclusion

20



Conclusion

Characteristic MCMC-ESS MUR-bData
Approximate approach Exact approach
Sampling before conditioning  Sampling before conditioning
Fast Faster
Flexible approach Less flexible approach
Iterative simulation Iterative or direct simulation

TABLE: Comparison between MCMC-ESS and MUR-bData approaches.

21
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