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Functional Data

Usual Setting

= X is a random function valued in a space (F, d) of eventually infinite
dimension.

= F is typically the space IL? of square integrable functions defined on
some finite interval D = [a, b].

= ni.i.d. functions X1, X2,..., X, ~ X are observed on D
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Spatio-temporal pollution data
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Source : Frévent, Ahmed, Dabo-Niang, Genin (2023). " Investigating spatial scan statistics for multivariate functional data".
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Spatial Acoustic Data (Sv)
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2 dimensions : vertically
(depths), horizontally itz
(Elementary Sampling
Unit; ESU) in distance

(here 0.1 nmi).

3 descriptors (depth in
meter, thickness in meter,

Doepth {m)

12MiHz

and relative density (mean Wk

sa)) using Matecho.
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Echogram representing the acoustic intensities
Source : Kande et al. (2024). "Investigating multivariate spatial functional data analysis for acoustic data". Ecological
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Repeated functional data (Finger Movements)
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Source : Moindjie et al. (2025). Fusion regression methods with repeated functional data. CSDA




Why FDA

= Functionality allows broader spectrum of models
= Estimating model parameters using a single sequence may be limited
= Time series analysis inherently operates on discrete data, with time stamps
assumed to be equally spaced and fixed
= Biological structures are synonymous with Functionality
= For proteins, the sequence leads to folding (structure), which ultimately determines
their function.
Comprehending functions necessitates a grasp of structures.
Structure analysis involves a foundation of mathematical representations followed
by the application of probabilistic superstructures.




FDA finds application across all branches of science and engi-
neering.

= Meteorology/environment : temperature prediction

= Computer Vision : depth sensing, activity recognition, vision-based automation,
and the analysis of video data.

= Computational Biology : Involves studying complex biomolecular structures and
understanding the relationship between organism shapes and functionality.

= Biometrics and Human Identification : Includes recognition of human face,
body, gait, etc.

= Wearables, Mobility, Fitness : Utilized in devices like Fitbit, sleep studies, and
motion capture (MoCap) technology.

= Electricity : Forecasting electricity consumption.

= Mining, natural sciences, economics, finance, etc




Historical Perspective



An old topic, lots of work already in the past

"FDA" by Jim Ramsay and colleagues in late 1980s
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Celebrating 100 years of the functional linear model

FDA has roots going back to the work of Fisher (1924)
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Historical

Perspective : FDA linear model (Fisher, 1924)

Disregarding, then, both the arithmetical and the statistieal difficulties, which a direct
attack on the problem would encounter, we may recognise that wherens with g suhdi
visiong of the year, the linear regression equations of the wheat crop wpon the rainfull
would be of the form

w=ctar tar+ .. Jar

where », v, ..., v, are the quantities of rain in the several intervals of time, and
iy, ... 6, are the regression coefficients, g0 if infinitely small subdivisions of time were
taken, we should replace the linear regression function by a regression integral of the
form
[ 4
=t .l—h @l ) w e e (EY
Ja

where rdt is the rain falling in the slement of time g ; the integral is taken over the whole
period concerned, and  is & continuour function of the time ¢, which it is our objeet to
evaluate from the statistical data.

Thanks to the "Historical FDA elements" by Gilbert Saporta (2024)




Celebrating 50 years of functional PCA
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Statistical and numerical methods of harmonic analysis by Deville (1974)
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New generation of functional data

Dependency-dimension-structures-nature of sample

= Shapes, complexe structures, multivariate, ...
= Non random sample

= Time/Spatially dependent series :

everything is related to everything else, but near things are more related
than distant things (Tolber, 1970)
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New generation of functional data

Data as observation of a random variable valued in a (complex) space of functions :

X = {(X(t), s X)) ¢ €T = 1,p),

th ij —>$j

R, §; = R (curve)
R, §; ={e1, e,...,ex} (sequence)
R?, S; = R (image/surface)
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Multivariate functions, images : f : [0,1]> — R?

Source : Srivastava
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Structures

Source : Srivastava
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Gaming, Remote sensing, Mobile depth sensing ...

e gt et oons ooe s || Tos s Wier

ﬁﬁﬁﬁﬁnﬁmﬂ

O e esetioss oo Acnsaa T e e

TETELL

15



In this talk

PCA of series

the considered sample is composed of :

. observations, collected by random sampling process

specificity of the proposed methods :

to regression /classification

the sample nature

16



FPCA in usual setting and applications
to supervised learning



Random Functions Mean and Covariance

X is a random function valued in L2

= Mean function :

= Covariance function :

et ) = E((X(1) — pl(e)(X(w) - u(w))
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Sample mean, standard deviation and covariance

Pointwise mean :

Pointwise standard deviation :

Sit) = 4| == Z (x(0 - >‘<n(t))2

Pointwise covariance function :
en(t, n—1 ( = Xt ))(X(”) ())

= X,(t) and &,(t, u) are estimators of the population parameters p(t) and c(t, u).

= &y(t, u) is interpreted in a similar way as the usual variance-covariance matrix
and is largely used in FDA.

Let Xi,..., X, be i.i.d (independent and identically distributed) observations of X

18



Sample mean, standard deviation and covariance of Brownian

Motion

Brownian Motions.

Brownian Motions

— True Mean
True SD.

— Sample Mean
- sample
24
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FPCA in usual setting and applications
to supervised learning

Modes of variability (PCA)



Covariance function and Principal Component Analysis

Functional Principal Component Analysis (FPCA), allows to represent a square
integrable random function X as :

X(t) = p(t) + 327 &vi(t)
(Karhunen-Loéve (KL) expansion)

= v; are the eigenfunctions and solutions of

/ c(t, )i} = M)

= A1 > X2 > ... are the eigenvalues.

= The random variables §; are the scores

&= (X —pv) = [(X(t) — u(t))v(t)dt

= )\ is the variance of X in the principal direction v;




Karhunen, Loéve, Kosambi (KLK) decomposition

The KL deccomposition is commonly attributed to Kari Karhunen (1946) and Michel
Loéve (1946) but it has been obtained earlier by D.D.Kosambi (1943)

Jharmananda K

1907-1966
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FPCA in practice and dimension reduction by FPCA

= Use the Estimated Functional Principal Components (EFPC'’s) ¥; as basis
functions for X :

Xi(t) = Xa(t) + > &0(1)
j=1
= Estimated scores : £ = fD(X,-(t) — Xa(1))0(t)dt

= EFPC’s ¥; are orthonormal, i.e.

(o6 1, j=«
Jp U(8)0(t)dt = {0’ [

= Choice of the dimension p,

N

N}



Application to Canadian weather data

First smooth the data

Temperature
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Temperature in °C
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Principal components (eigen) functions

0.05 4

0.00 +

-0.05 4

-0.10 1

100 200 300
Day of Year

0.03 4

0.02 4

0.01 A

0.00 +

-0.01 4

-0.02 4

Princ. Comrr

24



Scores
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Approximation with the first p = 3 PCA basis functions

Temperature in °C
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PCA of spatial multivariate functional
data




Modeling geospatial functional data

= We consider daily temperature data recorded at n stations from the
meteorological monitoring network.

= We have M data at each station corresponding to daily records of maximum
temperature obtained from a given period

= Prediction of the whole temperature curve at a given station

= The spatio-temporal dataset could be analyzed by using, space-time geostatistics
(space-time kriging, see Cressie and Wikle, 2011).

27



Geospatial functional data
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Modeling spatial functional data

= Modelization of functional data basically focuses on independent data.

= In many applied domains, data are spatially correlated functions :
economic, environmental, hydrology, ...

Example : curves of daily concentration of ozone at two near stations
= Some works are developed to deal with spatially correlated functional data

= Functional geostatistical data :
PCA and clustering : Kuenzer et al. (2022), Vandewalle et al. (2022), Frevent et. al (2023),...
PCA and Moran statistics : Assan et al. (2019), Darbi et al (2022) ,...,
Kriging methods : Monestiez aand Nerini (2008), Giraldo et al. (2010), Bohorquez et al. (2016), ...
Nonparametric regression : Ternynck (2014), Dabo-Niang et al. (2011, 2018, 2020),...

= Lattice functional data : less developed

Ruiz-Medina (2012) : prediction of SAR hilbertian processes

Pineda-Rios and Giraldo (2016), Zhang et al. (2016) ; Ahmed et al. (2021) ; Huang et al. (2018) :
FLMs with SAR disturbance process

29



Basic notations for functional geo-spatial data

= X = (Xs(.), s € RN), a measurable spatial process N > 1, defined on some
probability space (2, A, P)

= X, is valued in a space (X, d) of eventually infinite dimension
= d(.,.) is some measure of proximity, e.g. a metric or a semi-metric
= X is a space of functions, typically 7 = [0, T].

= X is observed at a set of locations S C RN of cardinal n, S={s1,...,sn},
si€RM, i=1...nand a set of time points J = {t1, ..., tm}, M

= E the set of the n X M discrete observations, E = {x,(t;),si € S,t; € J}.
= Prediction of a whole curve X5, = {Xs,(t), t € T}

30



Before prediction

The discrete data {xs(t),s;i € S,t € T} are converted into curves

{X;,(t),si € S,t € T} by using smoothing methods (e.g. Splines).

{X;(t),si € S,t € T} are valued in X = L?[0, T]
= Expand each Xj(.) in terms of basis functions (here FPC).

= Take into acount the spatial dimension into the FPCA

31



Spatial dependence

(i) E(Xs(t)) = E(Xo(t)) = p(t), t € T does not depend on s with 0 the zero
vector in RV
(ii) for alls,h € S, and t,s € T ;

Gu(t,s) := Cov (Xh(t),Xo(s)> = Cov (Xs+h(t),Xs(s)>
\depends only on the spatial lag. /

2700 (h) = Var(Xs.n(t) — X())

\ ¥e(h) = ve,e(h)

N




+(h) = /T e(h)d

2y(h) = E/ (X, (t) — X5, (£))’dt, h=s; —s;,si,5,€ S
T

33



Spectral Spatial FPCA (SFPCA)

Kuenzer et al. (2020), Si-Ahmed et al. (2024).
Let S be a regular grid (rectangular domain) of Z", FX be the spectral density
operator of Xs with kernel :

5 (t,s) :== Z G(t,s) exp(—ih ' 6)

hezN

(@m)¥ )N

F& =Y Xum(6)em(6) ® oum(6)

m>1

where Ap(0) > Am(0) > ... >0

n(t]6) = qum. Yexp(—il' 6).
lezN

The functional principal component score is defined as :

Ema = 3 (Xt 0r)

les

1)

)

®3)

(4)
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SFPCA

Karhunen-Loéve-Kosambi spatial expansion :

mes ), Xms(t) 1= Emsndm(t), te€T

1ezN

The spectral density operator estimate :

~ . 1 ~ _ih'e
.Fg = W Z W(h/q)Che

Ihl[<a

Ch the sample autocovariance operators, w(.) a weight function

G=2 3 (Km-X)®(%-X)

sth,,,

(5)

(6)

()

with Mhn = {s: 1 <s;,s;+ h; < n;, V1 < i < N}. If the set My is empty, Eh =0,

n= H{V:I s




SFPCA

K
Z €T,
Xm S(t Z §m 5+l¢mla

Moo <t

assuming 1 +2L <s; < n—2Lfor 1 <i<N.
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Daily temperature data (year 2001)
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Correlations

Lag for latitude

0

Lag for longitude
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Space-time filters
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Spectral Principal Component Analysis of Multivariate Spatial
Functional Data

Let the covariance operator C; := E[(XY — 1/) @ (XY — 1/)] of X/

(GA)(E) = / G(s, )F(s)ds, f e L(T), teT, ()
T;

j

Weakly stationary functional process

i s‘t = () = 't,te i wit eing the zero vector in
() E(xP(2)) = B(X{(£)) = 4/(t), t € T; with 0 being th RY
(i) for all s,h € D, and t,s € T} ;

¢n(t,s) = Cov (Xi(t),Xé(s)) = Cov (ijﬂl(t),ij(s)>

40



Spectral Principal Component Analysis of Multivariate Spatial
Functional Data

Let ]-'g((j) be the spectral density operator of XSU) with the following kernel :

(t s) = W 'gZ:N Gin(t,s)exp(—ih'0)
B =37 0 m(0)0m(6) @ 01.m(6)

m>1

where Aj m(6) > Ajm(0) > ... >0

rm(t]0) = 6%\ (t) exp(—il " 0).

lezN

The functional principal component score is defined as :

gg?s = Z <Xs(£)l7 ¢(,:7%|>

leD

(9)

(10)

(11)

(12)
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Spectral Principal Component Analysis of Multivariate Spatial
Functional Data (SMFPCA)

The Karhunen-Loéve spatial expansion of Xs(j) is given by :

x9(t) =3 XUu(t) t e T with

m=1
X9(2) =Y €969, (2)
lezN

The spectral density operator is estimated as :

=x0) 1 —ihT o
Fo = o Z (h/Q) j,h€

[Ihl|<q

Cjn the sample autocovariance operators.

(13)

(14)




SMFPCA Methodology

The multivariate eigenfunctions are :
M;
Die(t) = D [enl 373(1) (15)
I=1

tieT,seD, m=1,.. M

Multivariate PCA scores
p M -
pma= D> [enl? €1 (16)

j=1 I=1

M;
XO()~ Y X(1), e, with X0(y)= > 949 (7

m=1 Moo <L
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Spatial MFPCA compare to MFPCA (Happ and Greven (2018))

2

X0 - 31, X0,

ZSED"
5 (18)
ZseDn

NMSE(M;) = :
XY

D,={s¢ ZVN:1<s;<niforalll<i< n}) represents a region where the mean is
calculated

ngmj f[,,ry,f]fv Ajym(e)do

NMSEZLy, (M) =1 — -
b > ot S Mim(8)d

(19)
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Spatial MFPCA compare to MFPCA (Happ and Greven (2018))

1. NMSE and NMSE* results obtained by SMFPCA and MFPCA with 2 functional
time series (2000, 2001).

Cumulative PCA PC1 PC2 PC3
Spatial consideration Spatial Ordinary Spatial Ordinary Spatial Ordinary
NMSE 2000 0.4796 0.5416 0.3396 0.5147 0.2103 0.3749
NMSE* 2000 0.4356 0.5156 0.2596 0.3342 0.1664 0.2695
NMSE 2001 0.5178 0.6016 0.3665 0.4121 0.3578 0.3627
NMSE* 2001 0.5061 0.6021 0.2709 0.3788 0.1678 0.2686

2. NMSE and NMSE™ results obtained by SMFPCA and MFPCA considering 3 series
(1996, 1998, 1999)

Cumulative PCA PC1 PC2 PC3
Spatial consideration Spatial Ordinary Spatial Ordinary Spatial Ordinary
NMSE 1996 0.5090 0.6364 0.5069 0.5215 0.3223 0.5029
NMSE* 1996 0.4523 0.5358 0.2786 0.3772 0.1794 0.2851
NMSE 1998 0.6980 0.7111 0.3418 0.5812 0.3026 0.5069
NMSE* 1998 0.4476 0.5791 0.2624 0.3855 0.1640 0.2837
NMSE 1999 0.4377 0.4762 0.3053 0.3941 0.2758 0.3237
NMSE* 1999 0.4254 0.4744 0.2739 0.3520 0.1889 0.2778
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Functional Kriging : Prediction of the
whole temperature curve at a given
station




Variogram Estimation

Let us suppose an isotropic variogram : v(h) = ~(|/h||)

The trace-variogram estimate is

) = ks > / 06 (8) ~ Xy (0t

si,s;€N(h)

where N(h):{(s,-,sj) 5 h—AS HS,‘—SJ'H Sh-i—A, I,J:].,
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Ordinary functional Kriging

X = Z X,
i=1

E(Xs,) = E(Xs,) and E/ (Xso () — X5, (2))?dt minimum
T

The (Ai)i=1,» are solutions of the system (m is a Lagrange multiplier)

0 Y(llst —s20l) oo (st —sall) 1 A1 v(lIso — sz 1)
v(lls1 —s21l) o <o sz =sal) 1 A2 v(llso = s211)
Y(list —snll) sz —sal) -+ 0 1 An v(llso = snll)

1 1 1 0 m 1

n

o2 (50) = E((Rsg — Xs)?) = m + E Aiv(lls; — soll)

i=1
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Other dependencies

eal data Spatial Functional PCA

i

RERDO

Source : (Pathmanathan et al. 2024). "Spatial Principal Component Analysis and Moran Statistics for

Multivariate Functional Areal Data". Under review.

.

= Generalized functional dynamic PCA : (Khoo et al. 2024).
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Thank you for listening
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